Automatic data-based bin width selection for rose diagram

Pub Date : 2023-03-09 DOI:10.1007/s10463-023-00868-4
Yasuhito Tsuruta, Masahiko Sagae
{"title":"Automatic data-based bin width selection for rose diagram","authors":"Yasuhito Tsuruta,&nbsp;Masahiko Sagae","doi":"10.1007/s10463-023-00868-4","DOIUrl":null,"url":null,"abstract":"<div><p>A rose diagram is a representation that circularly organizes data with the bin width as the central angle. This diagram is widely used to display and summarize circular data. Some studies have proposed the selector of bin width based on data. However, only a few papers have discussed the property of these selectors from a statistical perspective. Thus, this study aims to provide a data-based bin width selector for rose diagrams using a statistical approach. We consider that the radius of the rose diagram is a nonparametric estimator of the square root of two times the circular density. We derive the mean integrated square error of the rose diagram and its optimal bin width and propose two new selectors: normal reference rule and biased cross-validation. We show that biased cross-validation converges to its optimizer. Additionally, we propose a polygon rose diagram to enhance the rose diagram.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-023-00868-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00868-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A rose diagram is a representation that circularly organizes data with the bin width as the central angle. This diagram is widely used to display and summarize circular data. Some studies have proposed the selector of bin width based on data. However, only a few papers have discussed the property of these selectors from a statistical perspective. Thus, this study aims to provide a data-based bin width selector for rose diagrams using a statistical approach. We consider that the radius of the rose diagram is a nonparametric estimator of the square root of two times the circular density. We derive the mean integrated square error of the rose diagram and its optimal bin width and propose two new selectors: normal reference rule and biased cross-validation. We show that biased cross-validation converges to its optimizer. Additionally, we propose a polygon rose diagram to enhance the rose diagram.

Abstract Image

分享
查看原文
玫瑰图基于数据的仓宽自动选择
玫瑰图是一种以箱宽作为圆心角对数据进行圆形组织的表示。这个图表被广泛用于显示和总结循环数据。一些研究提出了基于数据的料仓宽度选择方法。然而,只有少数论文从统计学的角度讨论了这些选择器的性质。因此,本研究旨在使用统计方法为玫瑰图提供基于数据的bin宽度选择器。我们认为玫瑰图的半径是圆密度的平方根两倍的非参数估计量。我们推导了玫瑰图的平均积分平方误差及其最优库宽度,并提出了两个新的选择器:正态参考规则和有偏交叉验证。我们证明了有偏交叉验证收敛到它的优化器。此外,我们提出了一个多边形玫瑰图来增强玫瑰图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信