{"title":"Seismic fragility of structures with energy dissipation devices for mainshock-aftershock events","authors":"M. Noureldin, M. Adane, Jinkook Kim","doi":"10.12989/EAS.2021.21.3.219","DOIUrl":null,"url":null,"abstract":"This paper presents a mainshock-aftershock seismic fragility and collapse capacity assessment of reinforced concrete (RC) structures retrofitted with a hybrid damper composed of a steel slit plate and friction pads. Three and eight-story RC buildings are designed and assessed before and after retrofit considering the aftershocks effect. Non-linear time-history response analysis (NLTHA) using twelve natural earthquake sequences are used to produce incremental dynamic analysis (IDA) curves to obtain the median collapse capacity of the structures. Three different damage state (DS) levels are used for the mainshock ground excitation to quantify the scale factors required for conducting the aftershock IDAs. The maximum inter-story drift ratio (MIDR) is used as the main engineering demand parameter. The study shows the importance of considering the aftershock in the seismic assessment process of RC structures. The un-retrofitted structures are found to experience a high level of deterioration under aftershock event which is not considered in the design stage. The findings of the study reveal that the mainshock-aftershock sequence responses of the retrofitted structures show better performance in terms of the median collapse capacity and the seismic fragility compared to the un-retrofitted ones.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.21.3.219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a mainshock-aftershock seismic fragility and collapse capacity assessment of reinforced concrete (RC) structures retrofitted with a hybrid damper composed of a steel slit plate and friction pads. Three and eight-story RC buildings are designed and assessed before and after retrofit considering the aftershocks effect. Non-linear time-history response analysis (NLTHA) using twelve natural earthquake sequences are used to produce incremental dynamic analysis (IDA) curves to obtain the median collapse capacity of the structures. Three different damage state (DS) levels are used for the mainshock ground excitation to quantify the scale factors required for conducting the aftershock IDAs. The maximum inter-story drift ratio (MIDR) is used as the main engineering demand parameter. The study shows the importance of considering the aftershock in the seismic assessment process of RC structures. The un-retrofitted structures are found to experience a high level of deterioration under aftershock event which is not considered in the design stage. The findings of the study reveal that the mainshock-aftershock sequence responses of the retrofitted structures show better performance in terms of the median collapse capacity and the seismic fragility compared to the un-retrofitted ones.
期刊介绍:
The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response