Optimized Parameter Tuning in a Recurrent Learning Process for Shoplifting Activity Classification

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mohd. Aquib Ansari, D. Singh
{"title":"Optimized Parameter Tuning in a Recurrent Learning Process for Shoplifting Activity Classification","authors":"Mohd. Aquib Ansari, D. Singh","doi":"10.2478/cait-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract From recent past, shoplifting has become a serious concern for business in both small/big shops and stores. It customarily involves the buyer concealing store items inside clothes/bags and then leaving the store without payment. Unfortunately, no cost-effective solution is available to overcome this problem. We, therefore intend to build an expert monitoring system to automatically recognize shoplifting events in megastores/shops by recognizing object-stealing actions of humans. The method proposed utilizes a deep convolutional-based InceptionV3 architecture to mine the prominent features from video clips. These features are used to custom Long Short Term Memory (LSTM) network to discriminate human stealing actions in video sequences. Optimizing recurrent learning classifier using different modeling parameters such as sequence length and batch size is a genuine contribution of this work. The experiments demonstrate that the system proposed has achieved an accuracy of 89.36% on the synthesized dataset, which comparatively outperforms other existing methods.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract From recent past, shoplifting has become a serious concern for business in both small/big shops and stores. It customarily involves the buyer concealing store items inside clothes/bags and then leaving the store without payment. Unfortunately, no cost-effective solution is available to overcome this problem. We, therefore intend to build an expert monitoring system to automatically recognize shoplifting events in megastores/shops by recognizing object-stealing actions of humans. The method proposed utilizes a deep convolutional-based InceptionV3 architecture to mine the prominent features from video clips. These features are used to custom Long Short Term Memory (LSTM) network to discriminate human stealing actions in video sequences. Optimizing recurrent learning classifier using different modeling parameters such as sequence length and batch size is a genuine contribution of this work. The experiments demonstrate that the system proposed has achieved an accuracy of 89.36% on the synthesized dataset, which comparatively outperforms other existing methods.
车间提升活动分类递归学习过程中的参数优化调整
摘要:近年来,入店行窃已成为小/大商店和商店严重关注的问题。它通常涉及买家将商店物品藏在衣服/袋子里,然后不付款就离开商店。不幸的是,没有经济有效的解决方案可以克服这个问题。因此,我们打算建立一个专家监控系统,通过识别人类的物品盗窃行为来自动识别大型商店/商店的入店行窃事件。该方法利用基于深度卷积的InceptionV3架构从视频片段中挖掘突出特征。将这些特征用于自定义长短期记忆(LSTM)网络,以识别视频序列中的人类偷窃行为。使用不同的建模参数(如序列长度和批大小)优化循环学习分类器是这项工作的真正贡献。实验表明,该系统在合成数据集上的准确率达到89.36%,相对优于现有的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信