{"title":"GSA Tomorrow: An Open Challenge to Promote the Future of Geoscience","authors":"K. M. Dorfler, A. Friedrich","doi":"10.1130/GSATG377GW.1","DOIUrl":null,"url":null,"abstract":"1Geoscience/geoscientists is defined as all subdisciplines that are recognized as Scientific Divisions of GSA (geoarchaeology, karst, planetary geology, etc.), and may be extrapolated to areas that cross over to other subdisciplines that may not be strictly recognized as a GSA Scientific Division. INTRODUCTION The future of geoscience rests on your shoulders. Geologists are passionate about their science and discuss their interests with vigor, firmly understanding why geoscience is as important to society as physiology, agriculture, or engineering. In many cases, non-geologists don’t see the clear importance and implication of the profession, outside of natural disasters and events that have immediate and apparent human effects. Countless geo-scientists1, including professionals, academics, and students, are already vocal self-advocates; however, in our currently digital world, where information can be instantly disseminated at the push of a button, it is time we took a collective effort as the Geological Society of America to actively emphasize the importance of science to the non-geologist, forming a movement to assertively advocate for our field. We invite you to contribute to this discussion by responding with succinct, measurable, and clear reasons on how what you do affects society. Our collective views could be used to guide non-geologists to advocate for geoscience just as non-physicians advocate for medical advances. GSA is as effective as its members, who make up 21Scientific Divisions, which have numerous, tangible impacts on society. As GSA continues focusing efforts on the advancement of the Society into the twenty-first century, we are taking a critical look at what the Society is doing, whom it is doing it for, and how it could be doing it better. PROGRESS IS A GOOD THING The world has changed since GSA was founded in 1888. Integrated circuits have allowed us to use personal computers, we use antibiotics to fight deadly infections, wireless communication provides global access, and we can instantly transmit high-resolution videos to our friends. Technology advances because of society and society advances because of technology. Yet, technological advancement would not be possible without the discovery, understanding, and properties of raw materials, a direct outcome of the unending commitment of the geoscience community. We are all driven by an insatiable human desire for a better understanding of our world and everything it contains— not strictly speaking of geoscience, but all science, technology, engineering, and mathematics fields, and the humanities. What we learn now is different than what we learned in 1888. What university students learn in their geology courses today is different than what the authors of this contribution learned, and what the authors of this contribution learned is quite different from each other. This is the nature of progress. This is a good thing. The tools we use to study geoscience are adapting, innovating, and modernizing the way we carry out our observations, research, and achievements. Instead of carrying a compass, paper topographic map, and notebook, students today have the option to download applications on a single smartphone to carry out the same functions. Many research groups use drone technology to assist with mapping rather than risking their safety on dangerous cliffs or simply inferring an inaccessible terrane. The results from science conducted with modern tools can be just as accurate, if not more so, than work conducted with conventional technology. It’s analogous to the way art has changed over tens of thousands of years—the tools have changed from carbon ash and hands, to mineral-based dyes and horse-hair brushes, pencils and ink pens, to computer software. The end product (from a petroglyph to a Monet) is still considered art but comparing pictographs to 3D graphics is like comparing William Smith’s 1815 geologic map of Britain with the British Geological Survey’s iGeology app, which provides multiple layers of geologic information, photos, and text about the country’s geology at the touch of a screen. If our profession will continue to evolve based on discovery and innovation (both internal and external to geoscience), how do we visualize geoscience in the next 50 years? The next 100 years?","PeriodicalId":35784,"journal":{"name":"GSA Today","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSA Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/GSATG377GW.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
1Geoscience/geoscientists is defined as all subdisciplines that are recognized as Scientific Divisions of GSA (geoarchaeology, karst, planetary geology, etc.), and may be extrapolated to areas that cross over to other subdisciplines that may not be strictly recognized as a GSA Scientific Division. INTRODUCTION The future of geoscience rests on your shoulders. Geologists are passionate about their science and discuss their interests with vigor, firmly understanding why geoscience is as important to society as physiology, agriculture, or engineering. In many cases, non-geologists don’t see the clear importance and implication of the profession, outside of natural disasters and events that have immediate and apparent human effects. Countless geo-scientists1, including professionals, academics, and students, are already vocal self-advocates; however, in our currently digital world, where information can be instantly disseminated at the push of a button, it is time we took a collective effort as the Geological Society of America to actively emphasize the importance of science to the non-geologist, forming a movement to assertively advocate for our field. We invite you to contribute to this discussion by responding with succinct, measurable, and clear reasons on how what you do affects society. Our collective views could be used to guide non-geologists to advocate for geoscience just as non-physicians advocate for medical advances. GSA is as effective as its members, who make up 21Scientific Divisions, which have numerous, tangible impacts on society. As GSA continues focusing efforts on the advancement of the Society into the twenty-first century, we are taking a critical look at what the Society is doing, whom it is doing it for, and how it could be doing it better. PROGRESS IS A GOOD THING The world has changed since GSA was founded in 1888. Integrated circuits have allowed us to use personal computers, we use antibiotics to fight deadly infections, wireless communication provides global access, and we can instantly transmit high-resolution videos to our friends. Technology advances because of society and society advances because of technology. Yet, technological advancement would not be possible without the discovery, understanding, and properties of raw materials, a direct outcome of the unending commitment of the geoscience community. We are all driven by an insatiable human desire for a better understanding of our world and everything it contains— not strictly speaking of geoscience, but all science, technology, engineering, and mathematics fields, and the humanities. What we learn now is different than what we learned in 1888. What university students learn in their geology courses today is different than what the authors of this contribution learned, and what the authors of this contribution learned is quite different from each other. This is the nature of progress. This is a good thing. The tools we use to study geoscience are adapting, innovating, and modernizing the way we carry out our observations, research, and achievements. Instead of carrying a compass, paper topographic map, and notebook, students today have the option to download applications on a single smartphone to carry out the same functions. Many research groups use drone technology to assist with mapping rather than risking their safety on dangerous cliffs or simply inferring an inaccessible terrane. The results from science conducted with modern tools can be just as accurate, if not more so, than work conducted with conventional technology. It’s analogous to the way art has changed over tens of thousands of years—the tools have changed from carbon ash and hands, to mineral-based dyes and horse-hair brushes, pencils and ink pens, to computer software. The end product (from a petroglyph to a Monet) is still considered art but comparing pictographs to 3D graphics is like comparing William Smith’s 1815 geologic map of Britain with the British Geological Survey’s iGeology app, which provides multiple layers of geologic information, photos, and text about the country’s geology at the touch of a screen. If our profession will continue to evolve based on discovery and innovation (both internal and external to geoscience), how do we visualize geoscience in the next 50 years? The next 100 years?