Zhenzhen Lin, Xianlei Chen, Lu Lu, Xin Yao, Chunyang Zhai, Hengcong Tao
{"title":"Recent advances in electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid: Mechanism, catalyst, coupling system","authors":"Zhenzhen Lin, Xianlei Chen, Lu Lu, Xin Yao, Chunyang Zhai, Hengcong Tao","doi":"10.1515/ntrev-2022-0518","DOIUrl":null,"url":null,"abstract":"Abstract Catalytic synthesis of value-added chemicals from sustainable biomass or biomass-derived platform chemicals is an essential strategy for reducing dependency on fossil fuels. As a precursor for the synthesis of important polymers such as polyesters, polyurethanes, and polyamides, FDCA is a monomer with high added value. Meanwhile, due to its widespread use in chemical industry, 2,5-furandicarboxylic acid (FDCA) has gained significant interest in recent years. In this review, we discuss the electrochemical oxidation of 5-hydroxymethylfurfural (HMF) and summarize the most recent advances in electrode materials from the past 5 years, including reaction mechanisms, catalyst structures, and coupling reactions. First, the effect of pH on the electrocatalytic oxidation of furfural is presented, followed by a systematic summary of the reaction mechanism (direct and indirect oxidation). Then, the advantages, disadvantages, and research progress of precious metal, non-precious metal, and non-metallic HMF electrooxidation catalysts are discussed. In addition, a coupled dual system that combines HMF electrooxidation with hydrogen reduction reaction, CO2 reduction, or N2 reduction for more effective energy utilization is discussed. This review can guide the electrochemical oxidation of furfural and the development of advanced electrocatalyst materials for the implementation and production of renewable resources. Graphical abstract","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0518","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Catalytic synthesis of value-added chemicals from sustainable biomass or biomass-derived platform chemicals is an essential strategy for reducing dependency on fossil fuels. As a precursor for the synthesis of important polymers such as polyesters, polyurethanes, and polyamides, FDCA is a monomer with high added value. Meanwhile, due to its widespread use in chemical industry, 2,5-furandicarboxylic acid (FDCA) has gained significant interest in recent years. In this review, we discuss the electrochemical oxidation of 5-hydroxymethylfurfural (HMF) and summarize the most recent advances in electrode materials from the past 5 years, including reaction mechanisms, catalyst structures, and coupling reactions. First, the effect of pH on the electrocatalytic oxidation of furfural is presented, followed by a systematic summary of the reaction mechanism (direct and indirect oxidation). Then, the advantages, disadvantages, and research progress of precious metal, non-precious metal, and non-metallic HMF electrooxidation catalysts are discussed. In addition, a coupled dual system that combines HMF electrooxidation with hydrogen reduction reaction, CO2 reduction, or N2 reduction for more effective energy utilization is discussed. This review can guide the electrochemical oxidation of furfural and the development of advanced electrocatalyst materials for the implementation and production of renewable resources. Graphical abstract
期刊介绍:
The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings.
In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.