Sneha N Naik, Roberta Forlano, Pinelopi Manousou, Robert Goldin, Elsa D Angelini
{"title":"Fibrosis severity scoring on Sirius red histology with multiple-instance deep learning.","authors":"Sneha N Naik, Roberta Forlano, Pinelopi Manousou, Robert Goldin, Elsa D Angelini","doi":"10.1017/S2633903X23000144","DOIUrl":null,"url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease, affecting approximately 30% of people worldwide. Histopathology reading of fibrosis patterns is crucial to diagnosing NAFLD. In particular, separating mild from severe stages corresponds to a critical transition as it correlates with clinical outcomes. Deep Learning for digitized histopathology whole-slide images (WSIs) can reduce high inter- and intra-rater variability. We demonstrate a novel solution to score fibrosis severity on a retrospective cohort of 152 Sirius-Red WSIs, with fibrosis stage annotated at slide level by an expert pathologist. We exploit multiple instance learning and multiple-inferences to address the sparsity of pathological signs. We achieved an accuracy of , an F1 score of and an AUC of . These results set new state-of-the-art benchmarks for this application.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":" ","pages":"e17"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2633903X23000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease, affecting approximately 30% of people worldwide. Histopathology reading of fibrosis patterns is crucial to diagnosing NAFLD. In particular, separating mild from severe stages corresponds to a critical transition as it correlates with clinical outcomes. Deep Learning for digitized histopathology whole-slide images (WSIs) can reduce high inter- and intra-rater variability. We demonstrate a novel solution to score fibrosis severity on a retrospective cohort of 152 Sirius-Red WSIs, with fibrosis stage annotated at slide level by an expert pathologist. We exploit multiple instance learning and multiple-inferences to address the sparsity of pathological signs. We achieved an accuracy of , an F1 score of and an AUC of . These results set new state-of-the-art benchmarks for this application.