Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I

IF 0.8 4区 数学 Q2 MATHEMATICS
Mai Katada
{"title":"Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I","authors":"Mai Katada","doi":"10.5802/aif.3544","DOIUrl":null,"url":null,"abstract":"We consider an action of the automorphism group $\\mathrm{Aut}(F_n)$ of the free group $F_n$ of rank $n$ on the filtered vector space $A_d(n)$ of Jacobi diagrams of degree $d$ on $n$ oriented arcs. This action induces on the associated graded vector space of $A_d(n)$, which is identified with the space $B_d(n)$ of open Jacobi diagrams, an action of the general linear group $\\mathrm{GL}(n,Z)$ and an action of the graded Lie algebra of the IA-automorphism group of $F_n$ associated with its lower central series. We use these actions on $B_d(n)$ to study the $\\mathrm{Aut}(F_n)$-module structure of $A_d(n)$. In particular, we consider the case where $d=2$ in detail and give an indecomposable decomposition of $A_2(n)$. We also construct a polynomial functor $A_d$ of degree $2d$ from the opposite category of the category of finitely generated free groups to the category of filtered vector spaces, which includes the $\\mathrm{Aut}(F_n)$-module structure of $A_d(n)$ for all $n\\geq 0$.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3544","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We consider an action of the automorphism group $\mathrm{Aut}(F_n)$ of the free group $F_n$ of rank $n$ on the filtered vector space $A_d(n)$ of Jacobi diagrams of degree $d$ on $n$ oriented arcs. This action induces on the associated graded vector space of $A_d(n)$, which is identified with the space $B_d(n)$ of open Jacobi diagrams, an action of the general linear group $\mathrm{GL}(n,Z)$ and an action of the graded Lie algebra of the IA-automorphism group of $F_n$ associated with its lower central series. We use these actions on $B_d(n)$ to study the $\mathrm{Aut}(F_n)$-module structure of $A_d(n)$. In particular, we consider the case where $d=2$ in detail and give an indecomposable decomposition of $A_2(n)$. We also construct a polynomial functor $A_d$ of degree $2d$ from the opposite category of the category of finitely generated free groups to the category of filtered vector spaces, which includes the $\mathrm{Aut}(F_n)$-module structure of $A_d(n)$ for all $n\geq 0$.
自由群的自同构群在雅可比图空间上的作用。我
我们考虑秩为$n$的自由群$F_n$的自同构群$\mathrm{Aut}(F_n)$在$n$向弧上的阶为$d$的Jacobi图的滤波向量空间$A_d(n)$上的作用。该作用在关联的分次向量空间$A_d(n)$上诱导,该空间由开Jacobi图的空间$B_d(n,n)$、一般线性群$\mathrm{GL}(n,Z)$的作用和与其下中心级数关联的IA自同构群$F_n$的分次李代数的作用来识别。我们利用$B_d(n)$上的这些作用来研究$A_d(n,n)$的$\mathrm{Aut}(F_n)$-模结构。特别地,我们详细考虑$d=2$的情况,并给出$A_2(n)$的不可分解分解。从有限生成自由群范畴的相反范畴到滤波向量空间范畴,我们还构造了一个次数为$2d$的多项式函子$a_d$,它包括所有$n\geq0$的$a_d(n)$的$\mathrm{Aut}(F_n)$模结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信