Ternary arithmetic, factorization, and the class number one problem

Q4 Mathematics
A. Bingham
{"title":"Ternary arithmetic, factorization, and the class number one problem","authors":"A. Bingham","doi":"10.15446/recolma.v55n2.102612","DOIUrl":null,"url":null,"abstract":"Ordinary multiplication of natural numbers can be generalized to a ternary operation by considering discrete volumes of lattice hexagons. With this operation, a natural notion of ‘3-primality’ -primality with respect to ternary multiplication- is defined, and it turns out that there are very few 3-primes. They correspond to imaginary quadratic fields Q(√-n), n > 0, with odd discriminant and whose ring of integers admits unique factorization. We also describe how to determine representations of numbers as ternary products and related algorithms for usual primality testing and integer factorization.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v55n2.102612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Ordinary multiplication of natural numbers can be generalized to a ternary operation by considering discrete volumes of lattice hexagons. With this operation, a natural notion of ‘3-primality’ -primality with respect to ternary multiplication- is defined, and it turns out that there are very few 3-primes. They correspond to imaginary quadratic fields Q(√-n), n > 0, with odd discriminant and whose ring of integers admits unique factorization. We also describe how to determine representations of numbers as ternary products and related algorithms for usual primality testing and integer factorization.
三元算术、因子分解和一类问题
通过考虑格六边形的离散体积,自然数的普通乘法可以推广为三元运算。通过这个运算,定义了“3-素数”的自然概念——关于三元乘法的素数,结果发现3-素数非常少。它们对应于虚二次域Q(√-n),n>0,具有奇数判别式,其整数环允许唯一因子分解。我们还描述了如何将数的表示确定为三元乘积,以及通常的素性测试和整数分解的相关算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信