Optimization on Large Interconnected Graphs and Networks Using Adiabatic Quantum Computation

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS
Venkat Padmasola, Rupak Chatterjee
{"title":"Optimization on Large Interconnected Graphs and Networks Using Adiabatic Quantum Computation","authors":"Venkat Padmasola, Rupak Chatterjee","doi":"10.1142/s0219749923500260","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate that it is possible to create an adiabatic quantum computing algorithm that solves the shortest path between any two vertices on an undirected graph with at most 3V qubits, where V is the number of vertices of the graph. We do so without relying on any classical algorithms, aside from creating a (V x V) adjacency matrix. The objective of this paper is to demonstrate the fact that it is possible to model large graphs on an adiabatic quantum computer using the maximum number of qubits available and random graph generators such as the Barabasi-Albert and the Erdos-Renyi methods which can scale based on a power law.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749923500260","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we demonstrate that it is possible to create an adiabatic quantum computing algorithm that solves the shortest path between any two vertices on an undirected graph with at most 3V qubits, where V is the number of vertices of the graph. We do so without relying on any classical algorithms, aside from creating a (V x V) adjacency matrix. The objective of this paper is to demonstrate the fact that it is possible to model large graphs on an adiabatic quantum computer using the maximum number of qubits available and random graph generators such as the Barabasi-Albert and the Erdos-Renyi methods which can scale based on a power law.
使用绝热量子计算的大型互联图和网络优化
在本文中,我们证明了可以创建一个绝热量子计算算法,该算法可以解决无向图上最多3V个量子比特的任意两个顶点之间的最短路径,其中V是图的顶点数。除了创建一个(V x V)邻接矩阵外,我们不依赖任何经典算法。本文的目的是证明这样一个事实,即可以使用可用的最大量子位和随机图形生成器(如Barabasi-Albert和Erdos-Renyi方法)在绝热量子计算机上模拟大型图形,这些方法可以基于幂律进行缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Information
International Journal of Quantum Information 物理-计算机:理论方法
CiteScore
2.20
自引率
8.30%
发文量
36
审稿时长
10 months
期刊介绍: The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research: Quantum Cryptography Quantum Computation Quantum Communication Fundamentals of Quantum Mechanics Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信