{"title":"Multivalent harmonic functions Involving multiplier transformation","authors":"V. Gupta, S. Porwal, Omendra Mishra","doi":"10.31801/cfsuasmas.962040","DOIUrl":null,"url":null,"abstract":"In the present investigation we study a subclass of multivalent harmonic functions involving multiplier transformation. An equivalent convolution class condition and a sufficient coefficient condition for this class is acquired. We also show that this coefficient condition is necessary for functions belonging to its subclass. As an application of coefficient condition, a necessary and sufficient hypergeometric inequality is also given. Further, results on bounds, inclusion relation, extreme points, a convolution property and a result based on the integral operator are obtained.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.962040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present investigation we study a subclass of multivalent harmonic functions involving multiplier transformation. An equivalent convolution class condition and a sufficient coefficient condition for this class is acquired. We also show that this coefficient condition is necessary for functions belonging to its subclass. As an application of coefficient condition, a necessary and sufficient hypergeometric inequality is also given. Further, results on bounds, inclusion relation, extreme points, a convolution property and a result based on the integral operator are obtained.