Adaptive transit scheduling to reduce rider vulnerability during heatwaves

IF 2.7 Q2 ENGINEERING, CIVIL
Noam Rosenthal, M. Chester, Andrew M. Fraser, D. Hondula, D. Eisenman
{"title":"Adaptive transit scheduling to reduce rider vulnerability during heatwaves","authors":"Noam Rosenthal, M. Chester, Andrew M. Fraser, D. Hondula, D. Eisenman","doi":"10.1080/23789689.2022.2029324","DOIUrl":null,"url":null,"abstract":"ABSTRACT Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure.","PeriodicalId":45395,"journal":{"name":"Sustainable and Resilient Infrastructure","volume":"7 1","pages":"744 - 755"},"PeriodicalIF":2.7000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable and Resilient Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23789689.2022.2029324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure.
自适应交通调度以减少热浪期间乘客的脆弱性
摘要气候变化引发的极端高温事件对过境乘客的舒适度和健康构成了越来越大的风险。为了减少接触,各机构可能会考虑改变时间表,减少为弱势人群服务的交通繁忙的公交线路的行车时间。本文开发了一个最小化热暴露的时间表优化模型,并将其应用于亚利桑那州凤凰城的当地公交服务,使用基于代理的模拟来告知出行需求和乘客特征。当以最大车队容量运行时,车队只需重新安排10%的路线,就可以将整个网络的风险降低35%。结果改善的显著特点是回报递减,这是由于乘客量的偏差以及车队规模与乘客等待时间之间的反比关系。获得备用车辆也可以确保显著减少暴露,尤其是在最极端的温度下。因此,重新出发提供了一种低成本、适应性强的恢复策略,以保护骑手免受极端高温的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
10.20%
发文量
34
期刊介绍: Sustainable and Resilient Infrastructure is an interdisciplinary journal that focuses on the sustainable development of resilient communities. Sustainability is defined in relation to the ability of infrastructure to address the needs of the present without sacrificing the ability of future generations to meet their needs. Resilience is considered in relation to both natural hazards (like earthquakes, tsunami, hurricanes, cyclones, tornado, flooding and drought) and anthropogenic hazards (like human errors and malevolent attacks.) Resilience is taken to depend both on the performance of the built and modified natural environment and on the contextual characteristics of social, economic and political institutions. Sustainability and resilience are considered both for physical and non-physical infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信