{"title":"Non-convex hybrid Method corresponding to Karakaya Iterative Process","authors":"Samina Kausar, M. Asif, Mubeen Munir","doi":"10.30538/psrp-oma2018.0008","DOIUrl":null,"url":null,"abstract":"In this article we present non-convex hybrid iteration algorithm corollaryresponding to Karakaya iterative scheme [1] as done by Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We also prove some strong convergence results about common fixed points for a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in Hilbert spaces. AMS Mathematics Subject Classification: 47H05; 47H09; 47H10.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2018.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this article we present non-convex hybrid iteration algorithm corollaryresponding to Karakaya iterative scheme [1] as done by Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We also prove some strong convergence results about common fixed points for a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in Hilbert spaces. AMS Mathematics Subject Classification: 47H05; 47H09; 47H10.