{"title":"An effective algorithm for deciding the solvability of a system of polynomial equations over 𝑝-adic integers","authors":"A. Chistov","doi":"10.1090/spmj/1740","DOIUrl":null,"url":null,"abstract":"<p>Consider a system of polynomial equations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> variables of degrees at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with integer coefficients whose lengths are at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta greater-than 2 Superscript upper M left-parenthesis n d right-parenthesis Super Superscript c 2 Super Super Superscript n Super Superscript n cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>c</mml:mi>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Delta > 2^{M(nd)^{c\\, 2^n n^3}} \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n (here <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>c</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">c>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a constant) depending on these polynomials and having the following property. For every prime <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the system under study has a solution in the ring of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic numbers if and only if it has a solution modulo <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for the least integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> does not divide <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This improves the previously known, at present classical result by B. J. Birch and K. McCann.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1740","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Consider a system of polynomial equations in nn variables of degrees at most dd with integer coefficients whose lengths are at most MM. By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer Δ>2M(nd)c2nn3\begin{equation*} \Delta > 2^{M(nd)^{c\, 2^n n^3}} \end{equation*}
(here c>0c>0 is a constant) depending on these polynomials and having the following property. For every prime pp the system under study has a solution in the ring of pp-adic numbers if and only if it has a solution modulo pNp^N for the least integer NN such that pNp^N does not divide Δ\Delta. This improves the previously known, at present classical result by B. J. Birch and K. McCann.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.