An effective algorithm for deciding the solvability of a system of polynomial equations over 𝑝-adic integers

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Chistov
{"title":"An effective algorithm for deciding the solvability of a system of polynomial equations over 𝑝-adic integers","authors":"A. Chistov","doi":"10.1090/spmj/1740","DOIUrl":null,"url":null,"abstract":"<p>Consider a system of polynomial equations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> variables of degrees at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with integer coefficients whose lengths are at most <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta greater-than 2 Superscript upper M left-parenthesis n d right-parenthesis Super Superscript c 2 Super Super Superscript n Super Superscript n cubed\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>M</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mi>d</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>c</mml:mi>\n <mml:mspace width=\"thinmathspace\" />\n <mml:msup>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\Delta > 2^{M(nd)^{c\\, 2^n n^3}} \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n (here <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"c greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>c</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">c>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a constant) depending on these polynomials and having the following property. For every prime <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the system under study has a solution in the ring of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic numbers if and only if it has a solution modulo <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for the least integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Superscript upper N\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">p^N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> does not divide <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Delta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This improves the previously known, at present classical result by B. J. Birch and K. McCann.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1740","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Consider a system of polynomial equations in n n variables of degrees at most d d with integer coefficients whose lengths are at most M M . By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer Δ > 2 M ( n d ) c 2 n n 3 \begin{equation*} \Delta > 2^{M(nd)^{c\, 2^n n^3}} \end{equation*} (here c > 0 c>0 is a constant) depending on these polynomials and having the following property. For every prime p p the system under study has a solution in the ring of p p -adic numbers if and only if it has a solution modulo p N p^N for the least integer N N such that p N p^N does not divide Δ \Delta . This improves the previously known, at present classical result by B. J. Birch and K. McCann.

在𝑝-adic整数上决定多项式方程组可解性的有效算法
考虑一个多项式方程组,其中n个变量的度数最多为d d,其整数系数的长度最多为M M。利用代数变量接近光滑分层的构造,我们可以构造一个正整数Δ >m (nd) c2n3\begin{equation*} \Delta > 2^{M(nd)^{c\, 2^n n^3}} \end{equation*}(这里c>0 c>0是一个常数)依赖于这些多项式,并且有以下属性。对于每一个素数p p,所研究的系统在p个p进数环中有解当且仅当它对最小整数N N有模p N p^N的解使得p N p^N不除Δ \Delta。这改进了先前已知的,目前由B. J. Birch和K. McCann给出的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信