Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
O. Racek, J. Blahůt, F. Hartvich
{"title":"Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)","authors":"O. Racek, J. Blahůt, F. Hartvich","doi":"10.5194/gi-10-203-2021","DOIUrl":null,"url":null,"abstract":"Abstract. This paper describes a newly designed, experimental, and affordable rock slope monitoring system. This system is being used to monitor three rock slopes in Czechia for a period of up to 2 years. The instrumented rock slopes have different lithology (sandstone, limestone, and granite), aspect, and structural and mechanical properties. Induction crackmeters monitor the dynamic of joints, which separate unstable rock blocks from the rock face. This setup works with a repeatability of measurements of 0.05 mm. External destabilising factors (air temperature, precipitation, incoming and outgoing radiation, etc.) are measured by a weather station placed directly within the rock slope. Thermal behaviour in the rock slope surface zone is monitored using a compound temperature probe, placed inside a 3 m deep subhorizontal borehole, which is insulated from external air temperature. Additionally, one thermocouple is placed directly on the rock slope surface. From the time series measured to date (the longest since autumn 2018), we are able to distinguish differences between the annual and diurnal temperature cycles of the monitored sites. From the first data, a greater annual joint dynamic is measured in the case of larger blocks; however, smaller blocks are more responsive to short-term diurnal temperature cycles. Differences in the thermal regime between the sites are also recognisable and are caused mainly by different slope aspect, rock mass thermal conductivity, and colour. These differences will be explained by the statistical analysis of longer time series in the future.\n","PeriodicalId":48742,"journal":{"name":"Geoscientific Instrumentation Methods and Data Systems","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Instrumentation Methods and Data Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gi-10-203-2021","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract. This paper describes a newly designed, experimental, and affordable rock slope monitoring system. This system is being used to monitor three rock slopes in Czechia for a period of up to 2 years. The instrumented rock slopes have different lithology (sandstone, limestone, and granite), aspect, and structural and mechanical properties. Induction crackmeters monitor the dynamic of joints, which separate unstable rock blocks from the rock face. This setup works with a repeatability of measurements of 0.05 mm. External destabilising factors (air temperature, precipitation, incoming and outgoing radiation, etc.) are measured by a weather station placed directly within the rock slope. Thermal behaviour in the rock slope surface zone is monitored using a compound temperature probe, placed inside a 3 m deep subhorizontal borehole, which is insulated from external air temperature. Additionally, one thermocouple is placed directly on the rock slope surface. From the time series measured to date (the longest since autumn 2018), we are able to distinguish differences between the annual and diurnal temperature cycles of the monitored sites. From the first data, a greater annual joint dynamic is measured in the case of larger blocks; however, smaller blocks are more responsive to short-term diurnal temperature cycles. Differences in the thermal regime between the sites are also recognisable and are caused mainly by different slope aspect, rock mass thermal conductivity, and colour. These differences will be explained by the statistical analysis of longer time series in the future.
岩石边坡热状态观察,结合裂纹计稳定性监测:来自捷克(中欧)三个不同地点的初步结果
摘要本文介绍了一种新设计的、实验性的、价格合理的岩石边坡监测系统。该系统用于监测捷克的三个岩石边坡,监测期长达2年。仪器化岩石边坡具有不同的岩性(砂岩、石灰岩和花岗岩)、形态以及结构和力学性质。感应式裂缝仪监测节理的动态,将不稳定的岩石块体与岩石表面分离。该设置的测量重复性为0.05 mm。外部不稳定因素(气温、降水、进出辐射等)由直接放置在岩石边坡内的气象站测量。使用复合温度探头监测岩石坡面区域的热行为,该探头位于3 m深的亚水平钻孔,与外部空气温度隔绝。此外,一个热电偶直接放置在岩石坡面上。根据迄今为止测量的时间序列(自2018年秋季以来最长的时间序列),我们能够区分监测点的年温度周期和日温度周期之间的差异。根据第一个数据,在较大区块的情况下,测量到更大的年度节理动态;然而,较小的区块对短期昼夜温度循环的反应更大。现场之间的热状况差异也是可以识别的,主要是由不同的坡向、岩体热导率和颜色引起的。这些差异将在未来通过更长时间序列的统计分析来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscientific Instrumentation Methods and Data Systems
Geoscientific Instrumentation Methods and Data Systems GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
3.70
自引率
0.00%
发文量
23
审稿时长
37 weeks
期刊介绍: Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following: concepts, design, and description of instrumentation and data systems; retrieval techniques of scientific products from measurements; calibration and data quality assessment; uncertainty in measurements; newly developed and planned research platforms and community instrumentation capabilities; major national and international field campaigns and observational research programs; new observational strategies to address societal needs in areas such as monitoring climate change and preventing natural disasters; networking of instruments for enhancing high temporal and spatial resolution of observations. GI has an innovative two-stage publication process involving the scientific discussion forum Geoscientific Instrumentation, Methods and Data Systems Discussions (GID), which has been designed to do the following: foster scientific discussion; maximize the effectiveness and transparency of scientific quality assurance; enable rapid publication; make scientific publications freely accessible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信