Hausdorff dimension of intersections with planes and general sets

IF 1.1 4区 数学 Q1 MATHEMATICS
P. Mattila
{"title":"Hausdorff dimension of intersections with planes and general sets","authors":"P. Mattila","doi":"10.4171/jfg/110","DOIUrl":null,"url":null,"abstract":"We give conditions on a general family $P_{\\lambda}:\\R^n\\to\\R^m, \\lambda \\in \\Lambda,$ of orthogonal projections which guarantee that the Hausdorff dimension formula $\\dim A\\cap P_{\\lambda}^{-1}\\{u\\}=s-m$ holds generically for measurable sets $A\\subset\\Rn$ with positive and finite $s$-dimensional Hausdorff measure, $s>m$, and with positive lower density. As an application we prove for measurable sets $A,B\\subset\\Rn$ with positive $s$- and $t$-dimensional measures, and with positive lower density that if $s + (n-1)t/n > n$, then $\\dim A\\cap (g(B)+z) = s+t - n$ for almost all rotations $g$ and for positively many $z\\in\\Rn$.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We give conditions on a general family $P_{\lambda}:\R^n\to\R^m, \lambda \in \Lambda,$ of orthogonal projections which guarantee that the Hausdorff dimension formula $\dim A\cap P_{\lambda}^{-1}\{u\}=s-m$ holds generically for measurable sets $A\subset\Rn$ with positive and finite $s$-dimensional Hausdorff measure, $s>m$, and with positive lower density. As an application we prove for measurable sets $A,B\subset\Rn$ with positive $s$- and $t$-dimensional measures, and with positive lower density that if $s + (n-1)t/n > n$, then $\dim A\cap (g(B)+z) = s+t - n$ for almost all rotations $g$ and for positively many $z\in\Rn$.
平面与一般集相交的Hausdorff维数
我们给出了一个正交投影的一般族$P_{\lambda}:\R^n\to\R^m, \lambda \in \Lambda,$的条件,保证了Hausdorff维数公式$\dim A\cap P_{\lambda}^{-1}\{u\}=s-m$对于具有正的和有限的$s$ -维Hausdorff测度,$s>m$和正的低密度的可测集$A\subset\Rn$是一般成立的。作为一个应用,我们证明了对于具有正的$s$和$t$维测度的可测集$A,B\subset\Rn$,并且具有正的低密度,如果$s + (n-1)t/n > n$,那么对于几乎所有的旋转$g$和对于正的许多$z\in\Rn$,如果$\dim A\cap (g(B)+z) = s+t - n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信