Extracellular Alkalinization Assay for the Detection of Early Defense Response

Q1 Agricultural and Biological Sciences
Natalia Moroz, Alisa Huffaker, Kiwamu Tanaka
{"title":"Extracellular Alkalinization Assay for the Detection of Early Defense Response","authors":"Natalia Moroz,&nbsp;Alisa Huffaker,&nbsp;Kiwamu Tanaka","doi":"10.1002/cppb.20057","DOIUrl":null,"url":null,"abstract":"<p>Plant recognition of invading organisms occurs through identification of foreign molecules associated with attackers and of self-derived, damage-associated molecules. Perception of these molecules activates signaling processes including dynamic changes in ion balance, production of second messengers such as reactive oxygen species and nitric oxide, increased levels of plant hormones, and map kinase cascade activation. Together these signaling events stimulate transcriptional changes to initiate plant defense responses. Among the earliest detectable signaling events is a rapid increase in apoplastic pH, i.e., extracellular alkalinization. Here, an assay for quantification of this alkalinization response using suspension-cultured cell lines for Arabidopsis, potato, and maize is described. This assay is an inexpensive, fast, simple, and reproducible method to quantify defense signaling output, providing a powerful tool for evaluating early plant responses to elicitors and pathogens. Results from the alkalinization assay are comparable to other more costly and time-consuming methods for assessing defense signaling, such as measurement of the oxidative burst, calcium influx, and marker gene expression. This bioassay is a quantitative and robust method for evaluation of plant defense output. © 2017 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20057","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 7

Abstract

Plant recognition of invading organisms occurs through identification of foreign molecules associated with attackers and of self-derived, damage-associated molecules. Perception of these molecules activates signaling processes including dynamic changes in ion balance, production of second messengers such as reactive oxygen species and nitric oxide, increased levels of plant hormones, and map kinase cascade activation. Together these signaling events stimulate transcriptional changes to initiate plant defense responses. Among the earliest detectable signaling events is a rapid increase in apoplastic pH, i.e., extracellular alkalinization. Here, an assay for quantification of this alkalinization response using suspension-cultured cell lines for Arabidopsis, potato, and maize is described. This assay is an inexpensive, fast, simple, and reproducible method to quantify defense signaling output, providing a powerful tool for evaluating early plant responses to elicitors and pathogens. Results from the alkalinization assay are comparable to other more costly and time-consuming methods for assessing defense signaling, such as measurement of the oxidative burst, calcium influx, and marker gene expression. This bioassay is a quantitative and robust method for evaluation of plant defense output. © 2017 by John Wiley & Sons, Inc.

细胞外碱化法检测早期防御反应。
植物对入侵生物的识别是通过识别与攻击者相关的外来分子和自身产生的与损伤相关的分子来实现的。对这些分子的感知可以激活信号传导过程,包括离子平衡的动态变化、第二信使(如活性氧和一氧化氮)的产生、植物激素水平的增加以及map激酶级联激活。这些信号事件共同刺激转录变化,启动植物防御反应。最早可检测到的信号事件之一是胞外pH值的快速增加,即细胞外碱化。本文描述了一种利用悬浮培养的拟南芥、马铃薯和玉米细胞系定量测定碱化反应的方法。这是一种廉价、快速、简单、可重复的定量防御信号输出的方法,为评估植物对激发子和病原体的早期反应提供了有力的工具。碱化试验的结果与其他评估防御信号的更昂贵、更耗时的方法相媲美,如测量氧化破裂、钙内流和标记基因表达。这种生物测定法是评估植物防御产出的一种定量和可靠的方法。©2017 by John Wiley & Sons, Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current protocols in plant biology
Current protocols in plant biology Agricultural and Biological Sciences-Plant Science
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. Current Protocols in Plant Biology provides reproducible step-by-step instructions for protocols relevant to plant research. Furthermore, Current Protocols content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols in Plant Biology to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Plant Biology is the comprehensive source for protocols in the multidisciplinary field of plant biology, providing an extensive range of protocols from basic to cutting edge. Coverage includes: Extraction and analysis of DNA, RNA, proteins Chromosome analysis Transcriptional analysis Protein expression Metabolites Plant enzymology Epigenetics Plant genetic transformation Mutagenesis Arabidopsis, Maize, Poplar, Rice, and Soybean, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信