Global weak solutions to the Navier-Stokes-Darcy-Boussinesq system for thermal convection in coupled free and porous media flows

IF 1.5 3区 数学 Q1 MATHEMATICS
Xiaoming Wang, Hao Wu
{"title":"Global weak solutions to the Navier-Stokes-Darcy-Boussinesq system for thermal convection in coupled free and porous media flows","authors":"Xiaoming Wang, Hao Wu","doi":"10.57262/ade/1610420433","DOIUrl":null,"url":null,"abstract":"We study the Navier-Stokes-Darcy-Boussinesq system that models the thermal convection of a fluid overlying a saturated porous medium in a general decomposed domain. In both two and three spatial dimensions, we prove existence of global weak solutions to the initial boundary value problem subject to the Lions and Beavers-Joseph-Saffman-Jones interface conditions. The proof is based on a proper time-implicit discretization scheme combined the compactness argument. Next, we establish a weak-strong uniqueness result such that a weak solution coincides with a strong solution emanating from the same initial data as long as the latter exists.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade/1610420433","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study the Navier-Stokes-Darcy-Boussinesq system that models the thermal convection of a fluid overlying a saturated porous medium in a general decomposed domain. In both two and three spatial dimensions, we prove existence of global weak solutions to the initial boundary value problem subject to the Lions and Beavers-Joseph-Saffman-Jones interface conditions. The proof is based on a proper time-implicit discretization scheme combined the compactness argument. Next, we establish a weak-strong uniqueness result such that a weak solution coincides with a strong solution emanating from the same initial data as long as the latter exists.
自由和多孔介质流动中热对流的Navier-Stokes-Darcy-Boussinesq系统的全局弱解
我们研究了Navier-Stokes Darcy Boussinesq系统,该系统模拟了在一般分解域中覆盖饱和多孔介质的流体的热对流。在二维和三维空间中,我们证明了Lions和Beavers Joseph-Saffman-Jones界面条件下初边值问题的全局弱解的存在性。该证明是基于适当的时间隐式离散化方案,结合了紧致性论点。接下来,我们建立一个弱-强唯一性结果,使得弱解与源自相同初始数据的强解重合,只要后者存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信