{"title":"Data Envelopment Analysis and Analytics Software for Optimizing Building Energy Efficiency","authors":"Z. Radovilsky, P. Taneja, P. Sahay","doi":"10.4018/ijban.290404","DOIUrl":null,"url":null,"abstract":"This research was motivated by the need to identify the most effective Data Envelopment Analysis (DEA) model and associated data analytics software for measuring, comparing, and optimizing building energy efficiency. By analyzing literature sources, the authors identified several gaps in the existing DEA approaches that were resolved in this research. In particular, the authors introduced energy efficiency indices like energy consumption per square foot and per occupant as a part of DEA models’ outputs. They also utilized inverse and min-max normalized output variables to resolve the issue of undesirable outputs in the DEA models. The evaluation of these models was done by utilizing various data analytics software including Python, R, Matlab, and Excel. The authors identified that the CCR DEA model with inverse output variables provided the most reliable energy efficiency scores, and the Python’s PyDEA package produces the most consistent efficiency scores while running the CCR model.","PeriodicalId":42590,"journal":{"name":"International Journal of Business Analytics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.290404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
This research was motivated by the need to identify the most effective Data Envelopment Analysis (DEA) model and associated data analytics software for measuring, comparing, and optimizing building energy efficiency. By analyzing literature sources, the authors identified several gaps in the existing DEA approaches that were resolved in this research. In particular, the authors introduced energy efficiency indices like energy consumption per square foot and per occupant as a part of DEA models’ outputs. They also utilized inverse and min-max normalized output variables to resolve the issue of undesirable outputs in the DEA models. The evaluation of these models was done by utilizing various data analytics software including Python, R, Matlab, and Excel. The authors identified that the CCR DEA model with inverse output variables provided the most reliable energy efficiency scores, and the Python’s PyDEA package produces the most consistent efficiency scores while running the CCR model.
期刊介绍:
The main objective of the International Journal of Business Analytics (IJBAN) is to advance the next frontier of decision sciences and provide an international forum for practitioners and researchers in business and governmental organizations—as well as information technology professionals, software developers, and vendors—to exchange, share, and present useful and innovative ideas and work. The journal encourages exploration of different models, methods, processes, and principles in profitable and actionable manners.