S. Saravi, Yu Zhang, Xiao Chen, M. Afsharnia, F. Setzpfandt, T. Pertsch
{"title":"Generation of counterpropagating and spectrally uncorrelated photon-pair states by spontaneous four-wave mixing in photonic crystal waveguides","authors":"S. Saravi, Yu Zhang, Xiao Chen, M. Afsharnia, F. Setzpfandt, T. Pertsch","doi":"10.3389/fphot.2022.953105","DOIUrl":null,"url":null,"abstract":"In this work, we propose and theoretically analyze a new scheme for generation of counterpropagating photon pairs in photonic crystal waveguides through the process of spontaneous four-wave mixing. Using the fundamental properties of periodic Bloch modes in a standard photonic crystal waveguide, we demonstrate how modal phase-matching can be reached between forward-propagating pump modes and counterpropagating signal and idler modes, for generation of degenerate and non-degenerate photon pairs. We then show how this scheme can be used for generation of photon pairs that are nearly uncorrelated in the spectral degree of freedom. Such a source will be highly interesting as a heralded source of single photons, especially as the spectrally separable signal and idler photons are also spatially separated directly at the source. We conduct our investigation based on a design in silicon, yet our design concept is general and can in principle be applied to any nanostructured material platform.","PeriodicalId":73099,"journal":{"name":"Frontiers in photonics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphot.2022.953105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, we propose and theoretically analyze a new scheme for generation of counterpropagating photon pairs in photonic crystal waveguides through the process of spontaneous four-wave mixing. Using the fundamental properties of periodic Bloch modes in a standard photonic crystal waveguide, we demonstrate how modal phase-matching can be reached between forward-propagating pump modes and counterpropagating signal and idler modes, for generation of degenerate and non-degenerate photon pairs. We then show how this scheme can be used for generation of photon pairs that are nearly uncorrelated in the spectral degree of freedom. Such a source will be highly interesting as a heralded source of single photons, especially as the spectrally separable signal and idler photons are also spatially separated directly at the source. We conduct our investigation based on a design in silicon, yet our design concept is general and can in principle be applied to any nanostructured material platform.