Interval groups related to finite Coxeter groups I

Q3 Mathematics
B. Baumeister, Georges Neaime, Sarah Rees
{"title":"Interval groups related to finite Coxeter groups I","authors":"B. Baumeister, Georges Neaime, Sarah Rees","doi":"10.5802/alco.266","DOIUrl":null,"url":null,"abstract":"We derive presentations of the interval groups related to all quasi-Coxeter elements in the Coxeter group of type $D_n$. Type $D_n$ is the only infinite family of finite Coxeter groups that admits proper quasi-Coxeter elements. The presentations we obtain are over a set of generators in bijection with what we call a Carter generating set, and the relations are those defined by the related Carter diagram together with a twisted or a cycle commutator relator, depending on whether the quasi-Coxeter element is a Coxeter element or not. The proof is based on the description of two combinatorial techniques related to the intervals of quasi-Coxeter elements. In a subsequent work [4], we complete our analysis to cover all the exceptional cases of finite Coxeter groups, and establish that almost all the interval groups related to proper quasi-Coxeter elements are not isomorphic to the related Artin groups, hence establishing a new family of interval groups with nice presentations. Alongside the proof of the main results, we establish important properties related to the dual approach to Coxeter and Artin groups.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

We derive presentations of the interval groups related to all quasi-Coxeter elements in the Coxeter group of type $D_n$. Type $D_n$ is the only infinite family of finite Coxeter groups that admits proper quasi-Coxeter elements. The presentations we obtain are over a set of generators in bijection with what we call a Carter generating set, and the relations are those defined by the related Carter diagram together with a twisted or a cycle commutator relator, depending on whether the quasi-Coxeter element is a Coxeter element or not. The proof is based on the description of two combinatorial techniques related to the intervals of quasi-Coxeter elements. In a subsequent work [4], we complete our analysis to cover all the exceptional cases of finite Coxeter groups, and establish that almost all the interval groups related to proper quasi-Coxeter elements are not isomorphic to the related Artin groups, hence establishing a new family of interval groups with nice presentations. Alongside the proof of the main results, we establish important properties related to the dual approach to Coxeter and Artin groups.
有限Coxeter群相关的区间群
我们导出了与类型$D_n$的Coxeter群中的所有拟Coxeter元素相关的区间群的表示。类型$D_n$是唯一一个允许适当拟Coxeter元素的有限Coxeter群的无限族。我们得到的表示是在一组与我们称之为Carter生成集的双射生成器上,并且这些关系是由相关的Carter图和扭曲或循环换向器相关器定义的,这取决于准Coxeter元素是否是Coxeter元。该证明基于对与拟Coxeter元素的区间有关的两种组合技术的描述。在随后的工作[4]中,我们完成了我们的分析,以覆盖有限Coxeter群的所有例外情况,并建立了几乎所有与适当拟Coxeter元素相关的区间群都不同构于相关的Artin群,从而建立了一个具有良好表示的新的区间群族。在证明主要结果的同时,我们还建立了与Coxeter和Artin群的对偶方法有关的重要性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信