Existence of solution for a class of fractional problems with sign-changing functions

IF 0.4 Q4 MATHEMATICS
F. M. Yaghoobi, J. Shamshiri
{"title":"Existence of solution for a class of fractional problems with sign-changing functions","authors":"F. M. Yaghoobi, J. Shamshiri","doi":"10.30495/JME.V15I0.2008","DOIUrl":null,"url":null,"abstract":"Here we study the existence and multiplicity of solutions for the ‎following‎ ‎fractional‎‎ problem‎ ‎$$‎ ‎(-\\Delta)_p^s u+a(x) |u|^‎{‎‎p‎-2} ‎u‎= f(x,u)‎, ‎$$‎ ‎with ‎the ‎Dirichlet‎ boundary condition $u=0$ on $\\partial\\Omega$‎ ‎where $\\Omega$ is a bounded domain with smooth boundary‎, ‎$p\\geq 2$‎,‎ $s\\in(0,1)$ and ‎‎$‎a(x)‎‎$‎ ‎is a‎ sign-changing ‎function.‎ ‎Moreover, we consider two different assumptions on the ‎function‎ $‎f(x,u)‎$‎, ‎including the cases of nonnegative and sign-changing ‎function.‎‎","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V15I0.2008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Here we study the existence and multiplicity of solutions for the ‎following‎ ‎fractional‎‎ problem‎ ‎$$‎ ‎(-\Delta)_p^s u+a(x) |u|^‎{‎‎p‎-2} ‎u‎= f(x,u)‎, ‎$$‎ ‎with ‎the ‎Dirichlet‎ boundary condition $u=0$ on $\partial\Omega$‎ ‎where $\Omega$ is a bounded domain with smooth boundary‎, ‎$p\geq 2$‎,‎ $s\in(0,1)$ and ‎‎$‎a(x)‎‎$‎ ‎is a‎ sign-changing ‎function.‎ ‎Moreover, we consider two different assumptions on the ‎function‎ $‎f(x,u)‎$‎, ‎including the cases of nonnegative and sign-changing ‎function.‎‎
一类具有变号函数的分式问题解的存在性
这里我们研究了下面的分数问题的解的存在性和多重性$$‎ ‎(-\Delta)_p^s u+a(x) |u|^‎{‎‎p‎-2} ‎u‎= f(x,u)‎, ‎$$具有Dirichlet边界条件 $u=0$ on $\partial\Omega$在哪里? $\Omega$ 具有光滑边界的有界域是$p\geq 2$·,· $s\in(0,1)$ 还有…$‎a(x)‎‎$是一个“符号更改”函数。此外,我们考虑了关于函数的两个不同假设 $‎f(x,u)‎$,包括非负函数和变号函数的情况
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信