Membership Inference Attacks Against Deep Learning Models via Logits Distribution

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, K. Sharif, Haibo Hu, Yuan-zhang Li
{"title":"Membership Inference Attacks Against Deep Learning Models via Logits Distribution","authors":"Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, K. Sharif, Haibo Hu, Yuan-zhang Li","doi":"10.1109/TDSC.2022.3222880","DOIUrl":null,"url":null,"abstract":"Deep Learning(DL) techniques have gained significant importance in the recent past due to their vast applications. However, DL is still prone to several attacks, such as the Membership Inference Attack (MIA), based on the memorability of training data. MIA aims at determining the presence of specific data in the training dataset of the model with substitute model of similar structure to the objective model. As MIA relies on the substitute model, they can be mitigated if the substitute model is not clear about the network structure of the objective model. To solve the challenge of shadow-model construction, this work presents L-Leaks, a member inference attack based on Logits. L-Leaks allow an adversary to use the substitute model's information to predict the presence of membership if the shadow and objective model are similar enough. Here, the substitute model is built by learning the logits of the objective model, hence making it similar enough. This results in the substitute model having sufficient confidence in the member samples of the objective model. The evaluation of the attack's success shows that the proposed technique can execute the attack more accurately than existing techniques. It also shows that the proposed MIA is significantly robust under different network models and datasets.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"3799-3808"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3222880","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3

Abstract

Deep Learning(DL) techniques have gained significant importance in the recent past due to their vast applications. However, DL is still prone to several attacks, such as the Membership Inference Attack (MIA), based on the memorability of training data. MIA aims at determining the presence of specific data in the training dataset of the model with substitute model of similar structure to the objective model. As MIA relies on the substitute model, they can be mitigated if the substitute model is not clear about the network structure of the objective model. To solve the challenge of shadow-model construction, this work presents L-Leaks, a member inference attack based on Logits. L-Leaks allow an adversary to use the substitute model's information to predict the presence of membership if the shadow and objective model are similar enough. Here, the substitute model is built by learning the logits of the objective model, hence making it similar enough. This results in the substitute model having sufficient confidence in the member samples of the objective model. The evaluation of the attack's success shows that the proposed technique can execute the attack more accurately than existing techniques. It also shows that the proposed MIA is significantly robust under different network models and datasets.
基于Logits分布的深度学习模型成员推断攻击
深度学习(DL)技术由于其广泛的应用,在最近的过去获得了显著的重要性。然而,深度学习仍然容易受到几种攻击,例如基于训练数据记忆性的隶属度推理攻击(MIA)。MIA旨在用与目标模型结构相似的替代模型确定模型训练数据集中是否存在特定数据。由于MIA依赖于替代模型,如果替代模型对目标模型的网络结构不清楚,则可以减轻MIA的影响。为了解决影子模型构建的挑战,本文提出了一种基于Logits的成员推理攻击L-Leaks。如果影子模型和客观模型足够相似,L-Leaks允许攻击者使用替代模型的信息来预测成员的存在。在这里,通过学习目标模型的逻辑来建立替代模型,从而使其足够相似。这使得替代模型对目标模型的成员样本具有足够的置信度。攻击成功的评估表明,与现有的攻击技术相比,该技术可以更准确地执行攻击。该方法在不同的网络模型和数据集下都具有显著的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信