{"title":"An 𝐿^{𝑝} shock admissibility condition for conservation laws","authors":"Hiroki Ohwa","doi":"10.1090/qam/1610","DOIUrl":null,"url":null,"abstract":"<p>We estimate the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) local distance between piecewise constant solutions to the Cauchy problem of conservation laws and propose a shock admissibility condition for having an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> local contraction of such solutions. Moreover, as an application, we prove that there exist <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> locally contractive solutions on some set of initial functions, to the Cauchy problem of conservation laws with convex or concave flux functions. As a result, for conservation laws with convex or concave flux functions, we see that rarefaction waves have an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript q\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>q</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q\\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) local contraction and shock waves have an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript r\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>r</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than r less-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>0</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">0>r\\leq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) local contraction.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1610","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We estimate the LpL^p (p>0p>0) local distance between piecewise constant solutions to the Cauchy problem of conservation laws and propose a shock admissibility condition for having an LpL^p local contraction of such solutions. Moreover, as an application, we prove that there exist LpL^p locally contractive solutions on some set of initial functions, to the Cauchy problem of conservation laws with convex or concave flux functions. As a result, for conservation laws with convex or concave flux functions, we see that rarefaction waves have an LqL^q (q≥1q\geq 1) local contraction and shock waves have an LrL^r (0>r≤10>r\leq 1) local contraction.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.