Ahmad Umar, Vaishali Yadav, V. Srivastava, Sadanand, P. Lohia, D. K. Dwivedi, A. Ibrahim, S. Akbar, H. Qasem, S. Baskoutas
{"title":"Simulation study of defect density on the performance of quantum dot solar cell with PTAA HTL layer using SCAPS-1D","authors":"Ahmad Umar, Vaishali Yadav, V. Srivastava, Sadanand, P. Lohia, D. K. Dwivedi, A. Ibrahim, S. Akbar, H. Qasem, S. Baskoutas","doi":"10.1680/jemmr.22.00130","DOIUrl":null,"url":null,"abstract":"In recent years, the quantum dot solar cell has attracted attention due to its versatile electrical and optical properties as a material. The quantum dot solar cell can be tuned in terms of bandgap and size. In the present work effect of defect density on the performance of the solar cell is studied with the help of Solar Cell Capacitance Simulator in one dimension (SCAPS-1D). The defect density Poly[bis(4-phenyl) (2,4,6-trimethyl phenyl)amine] (PTAA)/ PbS- tetra-butyl ammonium iodide(PbS-TBAI) and PbS- tetra-butyl ammonium iodide(PbS-TBAI/ Titanium dioxide(TiO2) is varied from 1x1010 cm−2 to 1x1017 cm−2 and variation of electron mobility of TiO2, temperature and work function is done. This simulation-based quantum dot absorber-based solar cells may, in the future, prove to be extremely effective quantum dot solar cell.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.22.00130","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, the quantum dot solar cell has attracted attention due to its versatile electrical and optical properties as a material. The quantum dot solar cell can be tuned in terms of bandgap and size. In the present work effect of defect density on the performance of the solar cell is studied with the help of Solar Cell Capacitance Simulator in one dimension (SCAPS-1D). The defect density Poly[bis(4-phenyl) (2,4,6-trimethyl phenyl)amine] (PTAA)/ PbS- tetra-butyl ammonium iodide(PbS-TBAI) and PbS- tetra-butyl ammonium iodide(PbS-TBAI/ Titanium dioxide(TiO2) is varied from 1x1010 cm−2 to 1x1017 cm−2 and variation of electron mobility of TiO2, temperature and work function is done. This simulation-based quantum dot absorber-based solar cells may, in the future, prove to be extremely effective quantum dot solar cell.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.