Counting rational points on projective varieties

IF 1.5 1区 数学 Q1 MATHEMATICS
P. Salberger
{"title":"Counting rational points on projective varieties","authors":"P. Salberger","doi":"10.1112/plms.12508","DOIUrl":null,"url":null,"abstract":"We develop a global version of Heath‐Brown's p‐adic determinant method to study the asymptotic behaviour of the number N(W; B) of rational points of height at most B on certain subvarieties W of Pn defined over Q. The most important application is a proof of the dimension growth conjecture of Heath‐Brown and Serre for all integral projective varieties of degree d ≥ 2 over Q. For projective varieties of degree d ≥ 4, we prove a uniform version N(W; B) = Od,n,ε(Bdim W+ε) of this conjecture. We also use our global determinant method to improve upon previous estimates for quasi‐projective surfaces. If, for example, X́$X\\acute{\\ }$ is the complement of the lines on a non‐singular surface X ⊂ P3 of degree d, then we show that N(X́;B)=Od(B3/√d(logB)4+B)$N(X\\acute{\\ };B) = {O}_d( {{B}^{3/\\surd d }{{( {\\log B} )}}^4 + B} )$ . For surfaces defined by forms a0x0d+a1x1d+a2x2d+a3x3d${a}_0x_0^d + {a}_1x_1^d + {a}_2x_2^d + {a}_3x_3^d$ with non‐zero coefficients, then we use a new geometric result for Fermat surfaces to show that N(X́;B)=Od(B3/√d(logB)4)$N( {X\\acute{\\ };B} ) = {O}_d({B}^{3/\\surd d}{( {\\log B} )}^4)$ for B ≥ e.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12508","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

We develop a global version of Heath‐Brown's p‐adic determinant method to study the asymptotic behaviour of the number N(W; B) of rational points of height at most B on certain subvarieties W of Pn defined over Q. The most important application is a proof of the dimension growth conjecture of Heath‐Brown and Serre for all integral projective varieties of degree d ≥ 2 over Q. For projective varieties of degree d ≥ 4, we prove a uniform version N(W; B) = Od,n,ε(Bdim W+ε) of this conjecture. We also use our global determinant method to improve upon previous estimates for quasi‐projective surfaces. If, for example, X́$X\acute{\ }$ is the complement of the lines on a non‐singular surface X ⊂ P3 of degree d, then we show that N(X́;B)=Od(B3/√d(logB)4+B)$N(X\acute{\ };B) = {O}_d( {{B}^{3/\surd d }{{( {\log B} )}}^4 + B} )$ . For surfaces defined by forms a0x0d+a1x1d+a2x2d+a3x3d${a}_0x_0^d + {a}_1x_1^d + {a}_2x_2^d + {a}_3x_3^d$ with non‐zero coefficients, then we use a new geometric result for Fermat surfaces to show that N(X́;B)=Od(B3/√d(logB)4)$N( {X\acute{\ };B} ) = {O}_d({B}^{3/\surd d}{( {\log B} )}^4)$ for B ≥ e.
计算射影变量上的有理点
我们发展了Heath‐Brown的p‐adic行列式方法的全局版本,以研究在Q上定义的Pn的某些子变种W上最多为B的有理点的数目N(W;B)的渐近行为。最重要的应用是证明了Heath‑Brown和Serre对Q上所有d≥2阶积分投影变种的维增长猜想。对于度d≥4的射影变种,我们证明了一致形式N(W;B)=Od,N,ε(Bdim W+ε)。我们还使用我们的全局行列式方法来改进以前对拟投影曲面的估计。例如,如果X́$X\acute{\}$是d次非奇异曲面X⊂P3上的线的补码,则我们证明N(X́;B)=Od(B3/√d(logB)4+B)$N(X\acut{\};B)={O}_d({{B}^{3/\surd}{({\log B})}^4+B}})$。对于形式a0x0d+a1x1d+a2x2d+a3x3d定义的表面${a}_0x_0^d+{a}_1x_1^d+{a}_2x_2^d+{a}_3x_3^d$具有非零系数,则我们使用Fermat曲面的一个新的几何结果来证明N(X́;B)=Od(B3/√d(logB)4)$N({X\acute{};B})={O}_d({B}^{3/\surd}{({\log B})}^4)$对于B≥e。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信