Movie Success Prediction and Performance Comparison using Various Statistical Approaches

Manav Agarwal, S. Venugopal, Rishab Kashyap, R. Bharathi
{"title":"Movie Success Prediction and Performance Comparison using Various Statistical Approaches","authors":"Manav Agarwal, S. Venugopal, Rishab Kashyap, R. Bharathi","doi":"10.5121/ijaia.2022.13102","DOIUrl":null,"url":null,"abstract":"Movies are among the most prominent contributors to the global entertainment industry today, and they are among the biggest revenue-generating industries from a commercial standpoint. It's vital to divide films into two categories: successful and unsuccessful. To categorize the movies in this research, a variety of models were utilized, including regression models such as Simple Linear, Multiple Linear, and Logistic Regression, clustering techniques such as SVM and K-Means, Time Series Analysis, and an Artificial Neural Network. The models stated above were compared on a variety of factors, including their accuracy on the training and validation datasets as well as the testing dataset, the availability of new movie characteristics, and a variety of other statistical metrics. During the course of this study, it was discovered that certain characteristics have a greater impact on the likelihood of a film's success than others. For example, the existence of the genre action may have a significant impact on the forecasts, although another genre, such as sport, may not. The testing dataset for the models and classifiers has been taken from the IMDb website for the year 2020. The Artificial Neural Network, with an accuracy of 86 percent, is the best performing model of all the models discussed.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2022.13102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Movies are among the most prominent contributors to the global entertainment industry today, and they are among the biggest revenue-generating industries from a commercial standpoint. It's vital to divide films into two categories: successful and unsuccessful. To categorize the movies in this research, a variety of models were utilized, including regression models such as Simple Linear, Multiple Linear, and Logistic Regression, clustering techniques such as SVM and K-Means, Time Series Analysis, and an Artificial Neural Network. The models stated above were compared on a variety of factors, including their accuracy on the training and validation datasets as well as the testing dataset, the availability of new movie characteristics, and a variety of other statistical metrics. During the course of this study, it was discovered that certain characteristics have a greater impact on the likelihood of a film's success than others. For example, the existence of the genre action may have a significant impact on the forecasts, although another genre, such as sport, may not. The testing dataset for the models and classifiers has been taken from the IMDb website for the year 2020. The Artificial Neural Network, with an accuracy of 86 percent, is the best performing model of all the models discussed.
电影成功预测和性能比较使用各种统计方法
电影是当今全球娱乐业最突出的贡献者之一,从商业角度来看,它们也是最大的创收产业之一。把电影分为两类很重要:成功的和不成功的。为了对本研究中的电影进行分类,使用了各种模型,包括回归模型,如简单线性、多元线性和逻辑回归,聚类技术,如SVM和K-Means,时间序列分析和人工神经网络。上述模型在各种因素上进行了比较,包括它们在训练和验证数据集以及测试数据集上的准确性、新电影特征的可用性以及各种其他统计指标。在这项研究的过程中,人们发现某些特征对电影成功的可能性的影响比其他特征更大。例如,类型动作的存在可能会对预测产生重大影响,尽管另一种类型,如体育,可能不会。模型和分类器的测试数据集取自IMDb网站2020年。人工神经网络的准确率为86%,是所讨论的所有模型中性能最好的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信