{"title":"Gelfand’s inverse problem for the graph Laplacian","authors":"Emilia Blaasten, H. Isozaki, M. Lassas, Jin Lu","doi":"10.4171/jst/455","DOIUrl":null,"url":null,"abstract":"We study the discrete Gel'fand's inverse boundary spectral problem of determining a finite weighted graph. Suppose that the set of vertices of the graph is a union of two disjoint sets: $X=B\\cup G$, where $B$ is called the set of the boundary vertices and $G$ is called the set of the interior vertices. We consider the case where the vertices in the set $G$ and the edges connecting them are unknown. Assume that we are given the set $B$ and the pairs $(\\lambda_j,\\phi_j|_B)$, where $\\lambda_j$ are the eigenvalues of the graph Laplacian and $\\phi_j|_B$ are the values of the corresponding eigenfunctions at the vertices in $B$. We show that the graph structure, namely the unknown vertices in $G$ and the edges connecting them, along with the weights, can be uniquely determined from the given data, if every boundary vertex is connected to only one interior vertex and the graph satisfies the following property: any subset $S\\subseteq G$ of cardinality $|S|\\geqslant 2$ contains two extreme points. A point $x\\in S$ is called an extreme point of $S$ if there exists a point $z\\in B$ such that $x$ is the unique nearest point in $S$ from $z$ with respect to the graph distance. This property is valid for several standard types of lattices and their perturbations.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/455","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We study the discrete Gel'fand's inverse boundary spectral problem of determining a finite weighted graph. Suppose that the set of vertices of the graph is a union of two disjoint sets: $X=B\cup G$, where $B$ is called the set of the boundary vertices and $G$ is called the set of the interior vertices. We consider the case where the vertices in the set $G$ and the edges connecting them are unknown. Assume that we are given the set $B$ and the pairs $(\lambda_j,\phi_j|_B)$, where $\lambda_j$ are the eigenvalues of the graph Laplacian and $\phi_j|_B$ are the values of the corresponding eigenfunctions at the vertices in $B$. We show that the graph structure, namely the unknown vertices in $G$ and the edges connecting them, along with the weights, can be uniquely determined from the given data, if every boundary vertex is connected to only one interior vertex and the graph satisfies the following property: any subset $S\subseteq G$ of cardinality $|S|\geqslant 2$ contains two extreme points. A point $x\in S$ is called an extreme point of $S$ if there exists a point $z\in B$ such that $x$ is the unique nearest point in $S$ from $z$ with respect to the graph distance. This property is valid for several standard types of lattices and their perturbations.
期刊介绍:
The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome.
The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory.
Schrödinger operators, scattering theory and resonances;
eigenvalues: perturbation theory, asymptotics and inequalities;
quantum graphs, graph Laplacians;
pseudo-differential operators and semi-classical analysis;
random matrix theory;
the Anderson model and other random media;
non-self-adjoint matrices and operators, including Toeplitz operators;
spectral geometry, including manifolds and automorphic forms;
linear and nonlinear differential operators, especially those arising in geometry and physics;
orthogonal polynomials;
inverse problems.