{"title":"An efficient QCA-based full adder design with power dissipation analysis","authors":"Ismail Gassoumi, L. Touil, A. Mtibaa","doi":"10.1080/21681724.2021.2025440","DOIUrl":null,"url":null,"abstract":"ABSTRACT Quantum Dot-Cellular automata (QCA) is a developing technology that is considered as the best viable alternate solution for CMOS technology which has short-channel effects. QCA is a transistor-free technology, and the information is distributed formulated on the charge of the electron and by Columbic repulsion theory. In this paper, an optimal adder circuit is proposed using QCA technology which consist only 14 cells. The proposed adder circuit is further utilised for designing of 4-bit adder design efficiently. Simulations results, are obtained precisely using QCADesigner software version 2.0.3., confirm that the proposed circuits work well. Moreover, the energy dissipations of the proposed adder circuit design is estimated using QCAPro tool. The performance of the proposed design was compared with the existing ones which shows better performance in terms of cell count, area, and latency. Suggested 1-bit and 4-bit QCA adders exhibit a delay of 0.5 and 1.25 clock cycle, occupy an active area of 0.01 and 0.1 and μm2, and use 14 and 84 QCA cells, respectively.","PeriodicalId":13968,"journal":{"name":"International Journal of Electronics Letters","volume":"11 1","pages":"55 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681724.2021.2025440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT Quantum Dot-Cellular automata (QCA) is a developing technology that is considered as the best viable alternate solution for CMOS technology which has short-channel effects. QCA is a transistor-free technology, and the information is distributed formulated on the charge of the electron and by Columbic repulsion theory. In this paper, an optimal adder circuit is proposed using QCA technology which consist only 14 cells. The proposed adder circuit is further utilised for designing of 4-bit adder design efficiently. Simulations results, are obtained precisely using QCADesigner software version 2.0.3., confirm that the proposed circuits work well. Moreover, the energy dissipations of the proposed adder circuit design is estimated using QCAPro tool. The performance of the proposed design was compared with the existing ones which shows better performance in terms of cell count, area, and latency. Suggested 1-bit and 4-bit QCA adders exhibit a delay of 0.5 and 1.25 clock cycle, occupy an active area of 0.01 and 0.1 and μm2, and use 14 and 84 QCA cells, respectively.
期刊介绍:
International Journal of Electronics Letters (IJEL) is a world-leading journal dedicated to the rapid dissemination of new concepts and developments across the broad and interdisciplinary field of electronics. The Journal welcomes submissions on all topics in electronics, with specific emphasis on the following areas: • power electronics • embedded systems • semiconductor devices • analogue circuits • digital electronics • microwave and millimetre-wave techniques • wireless and optical communications • sensors • instrumentation • medical electronics Papers should focus on technical applications and developing research at the cutting edge of the discipline. Proposals for special issues are encouraged, and should be discussed with the Editor-in-Chief.