The stability and convergence of the numerical computation for the temporal fractional Black–Scholes equation

IF 0.4 Q4 MATHEMATICS
H. Mesgarani, Masod Bakhshandeh, Yones Esmaeelzade
{"title":"The stability and convergence of the numerical computation for the temporal fractional Black–Scholes equation","authors":"H. Mesgarani, Masod Bakhshandeh, Yones Esmaeelzade","doi":"10.30495/JME.V15I0.1991","DOIUrl":null,"url":null,"abstract":"In this paper‎, ‎the temporal fractional Black–Scholes model (TFBSM) is discussed in the limited specific domain which the time derivative of this template‎ ‎is the Caputo fractional function‎. ‎The value variance of the associated fractal transmission method was applied to forecast TFBSM‎. ‎For solving‎, ‎at first the semi-discrete scheme is obtained by using linear interpolation with a temporally $\\tau^{2-\\alpha}$ order accuracy‎. ‎Then‎, ‎the full scheme is collected by approximating the spatial derivative terms by helping‎ ‎the Chebyshev collocation system focused on the fourth form‎. ‎Finally‎, ‎the unconditional stability and convergence order is evaluated by performing the energy process‎. ‎As an implementation of this method‎, ‎two examples of the‎ ‎TFBSM was reported to demonstrate the accuracy of the developed scheme‎. ‎Calculation simulation and comparison show that the suggested strategy is very accurate and effective.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V15I0.1991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper‎, ‎the temporal fractional Black–Scholes model (TFBSM) is discussed in the limited specific domain which the time derivative of this template‎ ‎is the Caputo fractional function‎. ‎The value variance of the associated fractal transmission method was applied to forecast TFBSM‎. ‎For solving‎, ‎at first the semi-discrete scheme is obtained by using linear interpolation with a temporally $\tau^{2-\alpha}$ order accuracy‎. ‎Then‎, ‎the full scheme is collected by approximating the spatial derivative terms by helping‎ ‎the Chebyshev collocation system focused on the fourth form‎. ‎Finally‎, ‎the unconditional stability and convergence order is evaluated by performing the energy process‎. ‎As an implementation of this method‎, ‎two examples of the‎ ‎TFBSM was reported to demonstrate the accuracy of the developed scheme‎. ‎Calculation simulation and comparison show that the suggested strategy is very accurate and effective.
时间分数阶Black-Scholes方程数值计算的稳定性和收敛性
在本文中‎, ‎时间分数Black-Scholes模型(TFBSM)是在有限的特定域中讨论的,该域是该模板的时间导数‎ ‎是Caputo分数函数‎. ‎将关联分形传递方法的值方差应用于TFBSM的预测‎. ‎用于解决‎, ‎首先,通过使用具有时间$\tau^{2-\alpha}$阶精度的线性插值来获得半离散格式‎. ‎然后‎, ‎通过帮助近似空间导数项来收集完整方案‎ ‎关注第四形态的切比雪夫搭配体系‎. ‎最后‎, ‎通过执行能量过程来评估无条件稳定性和收敛阶‎. ‎作为此方法的实现‎, ‎‎ ‎据报道,TFBSM证明了所开发方案的准确性‎. ‎计算仿真和比较表明,该策略是准确有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信