On congruence half-factorial Krull monoids with cyclic class group

IF 0.6 2区 数学 Q3 MATHEMATICS
A. Plagne, W. Schmid
{"title":"On congruence half-factorial Krull monoids with cyclic class group","authors":"A. Plagne, W. Schmid","doi":"10.4171/jca/34","DOIUrl":null,"url":null,"abstract":"We carry out a detailed investigation of congruence half-factorial Krull monoids with finite cyclic class group and related problems. Specifically, we determine precisely all relatively large values that can occur as a minimal distance of a Krull monoid with finite cyclic class group, as well as the exact distribution of prime divisors over the ideal classes in these cases. Our results apply to various classical objects, including maximal orders and certain semi-groups of modules. In addition, we present applications to quantitative problems in factorization theory. More specifically, we determine exponents in the asymptotic formulas for the number of algebraic integers whose sets of lengths have a large difference.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/jca/34","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/34","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

We carry out a detailed investigation of congruence half-factorial Krull monoids with finite cyclic class group and related problems. Specifically, we determine precisely all relatively large values that can occur as a minimal distance of a Krull monoid with finite cyclic class group, as well as the exact distribution of prime divisors over the ideal classes in these cases. Our results apply to various classical objects, including maximal orders and certain semi-groups of modules. In addition, we present applications to quantitative problems in factorization theory. More specifically, we determine exponents in the asymptotic formulas for the number of algebraic integers whose sets of lengths have a large difference.
关于具有循环子群的同余半阶乘Krull半群
我们对具有有限循环子群的同余半因子Krull半群及相关问题进行了详细的研究。具体地说,我们精确地确定了所有相对较大的值,这些值可以作为具有有限循环子群的Krull monoid的最小距离出现,以及在这些情况下理想类上素数的精确分布。我们的结果适用于各种经典对象,包括模的极大阶和某些半群。此外,我们还介绍了因子分解理论在定量问题中的应用。更具体地说,我们在长度集有很大差异的代数整数的数量的渐近公式中确定指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信