The benefits of peritoneal dialysis (PD) solution with low-glucose degradation product in residual renal function and dialysis adequacy in PD patients: A meta-analysis.
{"title":"The benefits of peritoneal dialysis (PD) solution with low-glucose degradation product in residual renal function and dialysis adequacy in PD patients: A meta-analysis.","authors":"Sheng Chen, J. Jia, Hui-juan Guo, Nan Zhu","doi":"10.54817/ic.v63n3a07","DOIUrl":null,"url":null,"abstract":"The peritoneal effects of low-glucose degradation product (GDP)-containing peritoneal dialysis (PD) solutions have been extensively described. To systematically evaluate the efficacy and safety of low GDP solution for PD patients, specifically the effect on residual renal function (RRF) and dialysis adequacy, we conducted a meta-analysis of the published randomized controlled trials (RCTs). Different databases were searched for RCTs that compared low GDP-PD solutions with conventional PD solutions in the treatment of PD patients with continuous ambulatory peritoneal dialysis (CAPD) and automated peritoneal dialysis (APD). The outcomes of RCTs should include RRF and may include small solute clear-ance, peritoneal transport status, nutritional status, and all-cause mortality. Seven studies (632 patients) were included. Compared with the conventional solution, low-GDP solution preserved RRF in PD patients over time (MD 0.66 mL/min, 95% CI 0.34 to 0.99; p<0.0001), particularly in one year of treatment (p<0.01), and improved weekly Kt/V (MD 0.11, 95% CI 0.05 to 0.17; p=0.0007) without an increased 4-hour D/Pcr (MD 0.00, 95% CI -0.02 to 0.02; p=1.00). Notably, the MD of RRF and urine volume between the two groups tended to decrease as time on PD progressed up to 24 months. Patients using low GDP PD solutions did not have an increased risk of all-cause mortality (MD 0.97, 95% CI 0.50 to 1.88; p=0.93). Our meta-analysis confirms that the low GDP PD solution preserves RRF, improves the dialysis adequacy without increasing the peritoneal solute transport rate and all-cause mortality. Further trials are needed to deter-mine whether this beneficial effect can affect long-term clinical outcomes.","PeriodicalId":14514,"journal":{"name":"Investigacion clinica","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigacion clinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.54817/ic.v63n3a07","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The peritoneal effects of low-glucose degradation product (GDP)-containing peritoneal dialysis (PD) solutions have been extensively described. To systematically evaluate the efficacy and safety of low GDP solution for PD patients, specifically the effect on residual renal function (RRF) and dialysis adequacy, we conducted a meta-analysis of the published randomized controlled trials (RCTs). Different databases were searched for RCTs that compared low GDP-PD solutions with conventional PD solutions in the treatment of PD patients with continuous ambulatory peritoneal dialysis (CAPD) and automated peritoneal dialysis (APD). The outcomes of RCTs should include RRF and may include small solute clear-ance, peritoneal transport status, nutritional status, and all-cause mortality. Seven studies (632 patients) were included. Compared with the conventional solution, low-GDP solution preserved RRF in PD patients over time (MD 0.66 mL/min, 95% CI 0.34 to 0.99; p<0.0001), particularly in one year of treatment (p<0.01), and improved weekly Kt/V (MD 0.11, 95% CI 0.05 to 0.17; p=0.0007) without an increased 4-hour D/Pcr (MD 0.00, 95% CI -0.02 to 0.02; p=1.00). Notably, the MD of RRF and urine volume between the two groups tended to decrease as time on PD progressed up to 24 months. Patients using low GDP PD solutions did not have an increased risk of all-cause mortality (MD 0.97, 95% CI 0.50 to 1.88; p=0.93). Our meta-analysis confirms that the low GDP PD solution preserves RRF, improves the dialysis adequacy without increasing the peritoneal solute transport rate and all-cause mortality. Further trials are needed to deter-mine whether this beneficial effect can affect long-term clinical outcomes.