{"title":"Particle Filter Based Framework for the Prognosis of Atherosclerosis via Lumped Cardiovascular Modeling","authors":"Karan Jain, Arijit Guha, A. Patra","doi":"10.36001/IJPHM.2019.V10I3.2628","DOIUrl":null,"url":null,"abstract":"Atherosclerosis refers to the plaque deposition in the arteries that can eventually lead to any of the three cardiovascular diseases, namely, heart attack, stroke, or peripheral vascular disease, depending upon the site of the blockage in the human arterial network. This work attempts to prognose this pathological condition via lumped cardiovascular modeling while utilizing the radial artery blood pressure measurements. To achieve this, the cardiovascular system has been modeled as a third order non-linear system with explicit emphasis on the systemic circulation. The parameters of the model are estimated using non-linear least squares estimation technique by minimizing the error between the measured and the estimated arterial pressure waveforms. The arterial pressure is found to be sensitive to three of the model parameters, namely, arterial compliance, systemic vascular resistance, and the peak cardiac muscle elastance. Based on the analysis, a growth model of systolic blood pressure is developed as a function of the arterial blockage. A particle filter based mathematical framework is then utilized to predict the time it would take to reach the stage of critical arterial blockage that may cause heart attacks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/IJPHM.2019.V10I3.2628","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Atherosclerosis refers to the plaque deposition in the arteries that can eventually lead to any of the three cardiovascular diseases, namely, heart attack, stroke, or peripheral vascular disease, depending upon the site of the blockage in the human arterial network. This work attempts to prognose this pathological condition via lumped cardiovascular modeling while utilizing the radial artery blood pressure measurements. To achieve this, the cardiovascular system has been modeled as a third order non-linear system with explicit emphasis on the systemic circulation. The parameters of the model are estimated using non-linear least squares estimation technique by minimizing the error between the measured and the estimated arterial pressure waveforms. The arterial pressure is found to be sensitive to three of the model parameters, namely, arterial compliance, systemic vascular resistance, and the peak cardiac muscle elastance. Based on the analysis, a growth model of systolic blood pressure is developed as a function of the arterial blockage. A particle filter based mathematical framework is then utilized to predict the time it would take to reach the stage of critical arterial blockage that may cause heart attacks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.