{"title":"Solving large-scale multi-agent tasks via transfer learning with dynamic state representation","authors":"Lintao Dou, Zhen Jia, Jian Huang","doi":"10.1177/17298806231162440","DOIUrl":null,"url":null,"abstract":"Many research results have emerged in the past decade regarding multi-agent reinforcement learning. These include the successful application of asynchronous advantage actor-critic, double deep Q-network and other algorithms in multi-agent environments, and the more representative multi-agent training method based on the classical centralized training distributed execution algorithm QMIX. However, in a large-scale multi-agent environment, training becomes a major challenge due to the exponential growth of the state-action space. In this article, we design a training scheme from small-scale multi-agent training to large-scale multi-agent training. We use the transfer learning method to enable the training of large-scale agents to use the knowledge accumulated by training small-scale agents. We achieve policy transfer between tasks with different numbers of agents by designing a new dynamic state representation network, which uses a self-attention mechanism to capture and represent the local observations of agents. The dynamic state representation network makes it possible to expand the policy model from a few agents (4 agents, 10 agents) task to large-scale agents (16 agents, 50 agents) task. Furthermore, we conducted experiments in the famous real-time strategy game Starcraft II and the multi-agent research platform MAgent. And also set unmanned aerial vehicles trajectory planning simulations. Experimental results show that our approach not only reduces the time consumption of a large number of agent training tasks but also improves the final training performance.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231162440","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Many research results have emerged in the past decade regarding multi-agent reinforcement learning. These include the successful application of asynchronous advantage actor-critic, double deep Q-network and other algorithms in multi-agent environments, and the more representative multi-agent training method based on the classical centralized training distributed execution algorithm QMIX. However, in a large-scale multi-agent environment, training becomes a major challenge due to the exponential growth of the state-action space. In this article, we design a training scheme from small-scale multi-agent training to large-scale multi-agent training. We use the transfer learning method to enable the training of large-scale agents to use the knowledge accumulated by training small-scale agents. We achieve policy transfer between tasks with different numbers of agents by designing a new dynamic state representation network, which uses a self-attention mechanism to capture and represent the local observations of agents. The dynamic state representation network makes it possible to expand the policy model from a few agents (4 agents, 10 agents) task to large-scale agents (16 agents, 50 agents) task. Furthermore, we conducted experiments in the famous real-time strategy game Starcraft II and the multi-agent research platform MAgent. And also set unmanned aerial vehicles trajectory planning simulations. Experimental results show that our approach not only reduces the time consumption of a large number of agent training tasks but also improves the final training performance.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.