{"title":"On ramified torsion points on a curve with stable reduction over an absolutely unramified base","authors":"Yuichiro Hoshi","doi":"10.18910/67013","DOIUrl":null,"url":null,"abstract":"Let p be an odd prime number, W an absolutely unramified p-adically complete discrete valuation ring with algebraically closed residue field, and X a curve of genus at least two over the field of fractions K of W. In the present paper, we study, under the assumption that X has stable reduction over W, torsion points on X, i.e., torsion points of the Jacobian variety J of X which lie on the image of the Albanese embedding X ↪→ J with respect to a K-rational point of X. A consequence of the main result of the present paper is that if, moreover, J has good reduction over W, then every torsion point on X is K-rational after multiplying p. This result is closely related to a conjecture of R. Coleman concerning the ramification of torsion points. For instance, this result leads us to a solution of the conjecture in the case where a given curve is hyperelliptic and of genus at least p.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/67013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let p be an odd prime number, W an absolutely unramified p-adically complete discrete valuation ring with algebraically closed residue field, and X a curve of genus at least two over the field of fractions K of W. In the present paper, we study, under the assumption that X has stable reduction over W, torsion points on X, i.e., torsion points of the Jacobian variety J of X which lie on the image of the Albanese embedding X ↪→ J with respect to a K-rational point of X. A consequence of the main result of the present paper is that if, moreover, J has good reduction over W, then every torsion point on X is K-rational after multiplying p. This result is closely related to a conjecture of R. Coleman concerning the ramification of torsion points. For instance, this result leads us to a solution of the conjecture in the case where a given curve is hyperelliptic and of genus at least p.