Vertically-stacked silicon nanosheet field effect transistors at 3 nm technology nodes - simulation at nanoscale

Q4 Engineering
C. K. Maiti, J. Jena, S. Das, E. Mohapatra, S. Dey, Tara Prasanna Dash
{"title":"Vertically-stacked silicon nanosheet field effect transistors at 3 nm technology nodes - simulation at nanoscale","authors":"C. K. Maiti, J. Jena, S. Das, E. Mohapatra, S. Dey, Tara Prasanna Dash","doi":"10.1504/ijnp.2020.10031798","DOIUrl":null,"url":null,"abstract":"Feasibility of vertically-stacked silicon nanosheet FETs (SNS-FETs) for extreme scaling at 3 nm technology node are investigated for the first time as one of the possible solutions to continue to enhance the performances of the CMOS technology. In this work, we use 3D predictive simulations to study the performance potential of SNS-FETs at 3 nm technology node. With the end of happy scaling era, change of device architecture has raised integration complexity along with severe short channel effects, mobility degradation, variability and quantum tunnelling leakage. These are the major challenges as device dimensions are scaled for ultimate scaling below 7 nm. Towards low power and high speed (more-than-Moore applications), nanowires and nanosheet transistors are being proposed. Today, the possibility of FinFET downscaling is still open and more than ever alternatives to CMOS transistors, such as, vertically-stacked SNS-FETs are showing their potential to surpass FinFETs. Variability due to metal grain granularity (MGG) is critical at 3 nm technology nodes, as such, the device threshold voltage variation due to MGG is examined for single nanosheet NS-FET. Finally, we calculate the mean and standard deviation of these parameters to quantify the variability.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnp.2020.10031798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Feasibility of vertically-stacked silicon nanosheet FETs (SNS-FETs) for extreme scaling at 3 nm technology node are investigated for the first time as one of the possible solutions to continue to enhance the performances of the CMOS technology. In this work, we use 3D predictive simulations to study the performance potential of SNS-FETs at 3 nm technology node. With the end of happy scaling era, change of device architecture has raised integration complexity along with severe short channel effects, mobility degradation, variability and quantum tunnelling leakage. These are the major challenges as device dimensions are scaled for ultimate scaling below 7 nm. Towards low power and high speed (more-than-Moore applications), nanowires and nanosheet transistors are being proposed. Today, the possibility of FinFET downscaling is still open and more than ever alternatives to CMOS transistors, such as, vertically-stacked SNS-FETs are showing their potential to surpass FinFETs. Variability due to metal grain granularity (MGG) is critical at 3 nm technology nodes, as such, the device threshold voltage variation due to MGG is examined for single nanosheet NS-FET. Finally, we calculate the mean and standard deviation of these parameters to quantify the variability.
垂直堆叠的3纳米技术节点硅纳米片场效应晶体管-纳米级模拟
首次研究了垂直堆叠硅纳米片FET(SNS-FET)在3nm技术节点上进行极端缩放的可行性,作为继续提高CMOS技术性能的可能解决方案之一。在这项工作中,我们使用3D预测模拟来研究SNS FET在3nm技术节点上的性能潜力。随着快乐缩放时代的结束,器件架构的变化提高了集成的复杂性,同时也带来了严重的短沟道效应、迁移率下降、可变性和量子隧道泄漏。这些是主要的挑战,因为器件尺寸被缩放为最终缩放到7nm以下。为了实现低功率和高速(超过摩尔应用),人们提出了纳米线和纳米片晶体管。如今,FinFET缩小规模的可能性仍然存在,CMOS晶体管的替代品,如垂直堆叠的SNS FET,比以往任何时候都更具超越FinFET的潜力。由于金属晶粒粒度(MGG)引起的可变性在3nm技术节点处是关键的,因此,针对单个纳米片NS-FET检查了由于MGG引起的器件阈值电压变化。最后,我们计算这些参数的平均值和标准差,以量化变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanoparticles
International Journal of Nanoparticles Engineering-Mechanical Engineering
CiteScore
1.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信