{"title":"The flux homomorphism on closed hyperbolic surfaces and Anti-de Sitter three-dimensional geometry","authors":"Andrea Seppi","doi":"10.1515/coma-2017-0013","DOIUrl":null,"url":null,"abstract":"Abstract Given a smooth spacelike surface ∑ of negative curvature in Anti-de Sitter space of dimension 3, invariant by a representation p: π1 (S) → PSL2ℝ x PSL2ℝ where S is a closed oriented surface of genus ≥ 2, a canonical construction associates to ∑ a diffeomorphism φ∑ of S. It turns out that φ∑ is a symplectomorphism for the area forms of the two hyperbolic metrics h and h' on S induced by the action of p on ℍ2 x ℍ2. Using an algebraic construction related to the flux homomorphism, we give a new proof of the fact that φ∑ is the composition of a Hamiltonian symplectomorphism of (S, h) and the unique minimal Lagrangian diffeomorphism from (S, h) to (S, h’).","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"4 1","pages":"183 - 199"},"PeriodicalIF":0.5000,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2017-0013","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2017-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Given a smooth spacelike surface ∑ of negative curvature in Anti-de Sitter space of dimension 3, invariant by a representation p: π1 (S) → PSL2ℝ x PSL2ℝ where S is a closed oriented surface of genus ≥ 2, a canonical construction associates to ∑ a diffeomorphism φ∑ of S. It turns out that φ∑ is a symplectomorphism for the area forms of the two hyperbolic metrics h and h' on S induced by the action of p on ℍ2 x ℍ2. Using an algebraic construction related to the flux homomorphism, we give a new proof of the fact that φ∑ is the composition of a Hamiltonian symplectomorphism of (S, h) and the unique minimal Lagrangian diffeomorphism from (S, h) to (S, h’).
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.