On the non-local priors for sparsity selection in high-dimensional Gaussian DAG models

IF 0.7 Q3 STATISTICS & PROBABILITY
Xuan Cao, F. Yang
{"title":"On the non-local priors for sparsity selection in high-dimensional Gaussian DAG models","authors":"Xuan Cao, F. Yang","doi":"10.1080/24754269.2021.1963182","DOIUrl":null,"url":null,"abstract":"We consider sparsity selection for the Cholesky factor L of the inverse covariance matrix in high-dimensional Gaussian DAG models. The sparsity is induced over the space of L via non-local priors, namely the product moment (pMOM) prior [Johnson, V., & Rossell, D. (2012). Bayesian model selection in high-dimensional settings. Journal of the American Statistical Association, 107(498), 649–660. https://doi.org/10.1080/01621459.2012.682536] and the hierarchical hyper-pMOM prior [Cao, X., Khare, K., & Ghosh, M. (2020). High-dimensional posterior consistency for hierarchical non-local priors in regression. Bayesian Analysis, 15(1), 241–262. https://doi.org/10.1214/19-BA1154]. We establish model selection consistency for Cholesky factor under more relaxed conditions compared to those in the literature and implement an efficient MCMC algorithm for parallel selecting the sparsity pattern for each column of L. We demonstrate the validity of our theoretical results via numerical simulations, and also use further simulations to demonstrate that our sparsity selection approach is competitive with existing methods.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"332 - 345"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1963182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider sparsity selection for the Cholesky factor L of the inverse covariance matrix in high-dimensional Gaussian DAG models. The sparsity is induced over the space of L via non-local priors, namely the product moment (pMOM) prior [Johnson, V., & Rossell, D. (2012). Bayesian model selection in high-dimensional settings. Journal of the American Statistical Association, 107(498), 649–660. https://doi.org/10.1080/01621459.2012.682536] and the hierarchical hyper-pMOM prior [Cao, X., Khare, K., & Ghosh, M. (2020). High-dimensional posterior consistency for hierarchical non-local priors in regression. Bayesian Analysis, 15(1), 241–262. https://doi.org/10.1214/19-BA1154]. We establish model selection consistency for Cholesky factor under more relaxed conditions compared to those in the literature and implement an efficient MCMC algorithm for parallel selecting the sparsity pattern for each column of L. We demonstrate the validity of our theoretical results via numerical simulations, and also use further simulations to demonstrate that our sparsity selection approach is competitive with existing methods.
高维高斯DAG模型稀疏度选择的非局部先验
我们考虑了高维高斯DAG模型中逆协方差矩阵的Cholesky因子L的稀疏度选择。稀疏性是通过非局部先验,即积矩(pMOM)先验在L空间上产生的[Johnson, V., & Rossell, D.(2012)]。高维环境下的贝叶斯模型选择。美国统计学会学报,107(498),649-660。https://doi.org/10.1080/01621459.2012.682536]和分层hyper-pMOM先验[Cao, X., Khare, K., Ghosh, M.(2020)。回归中层次非局部先验的高维后验一致性。贝叶斯分析,15(1),241-262。https://doi.org/10.1214/19-BA1154]。与文献相比,我们在更宽松的条件下建立了Cholesky因子的模型选择一致性,并实现了一种高效的MCMC算法来并行选择l的每列的稀疏性模式。我们通过数值模拟证明了理论结果的有效性,并使用进一步的模拟来证明我们的稀疏性选择方法与现有方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信