On the average eccentricity, the harmonic index and the largest signless Laplacian eigenvalue of a graph

IF 0.6 Q3 MATHEMATICS
H. Deng, S. Balachandran, S. Ayyaswamy, Y. B. Venkatakrishnan
{"title":"On the average eccentricity, the harmonic index and the largest signless Laplacian eigenvalue of a graph","authors":"H. Deng, S. Balachandran, S. Ayyaswamy, Y. B. Venkatakrishnan","doi":"10.22108/TOC.2017.21470","DOIUrl":null,"url":null,"abstract":"The eccentricity of a vertex is the maximum distance from it to‎ ‎another vertex and the average eccentricity $eccleft(Gright)$ of a‎ ‎graph $G$ is the mean value of eccentricities of all vertices of‎ ‎$G$‎. ‎The harmonic index $Hleft(Gright)$ of a graph $G$ is defined‎ ‎as the sum of $frac{2}{d_{i}+d_{j}}$ over all edges $v_{i}v_{j}$ of‎ ‎$G$‎, ‎where $d_{i}$ denotes the degree of a vertex $v_{i}$ in $G$‎. ‎In‎ ‎this paper‎, ‎we determine the unique tree with minimum average‎ ‎eccentricity among the set of trees with given number of pendent‎ ‎vertices and determine the unique tree with maximum average‎ ‎eccentricity among the set of $n$-vertex trees with two adjacent‎ ‎vertices of maximum degree $Delta$‎, ‎where $ngeq 2Delta$‎. ‎Also‎, ‎we‎ ‎give some relations between the average eccentricity‎, ‎the harmonic‎ ‎index and the largest signless Laplacian eigenvalue‎, ‎and strengthen‎ ‎a result on the Randi'{c} index and the largest signless Laplacian‎ ‎eigenvalue conjectured by Hansen and Lucas cite{hl}‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"43-50"},"PeriodicalIF":0.6000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.21470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The eccentricity of a vertex is the maximum distance from it to‎ ‎another vertex and the average eccentricity $eccleft(Gright)$ of a‎ ‎graph $G$ is the mean value of eccentricities of all vertices of‎ ‎$G$‎. ‎The harmonic index $Hleft(Gright)$ of a graph $G$ is defined‎ ‎as the sum of $frac{2}{d_{i}+d_{j}}$ over all edges $v_{i}v_{j}$ of‎ ‎$G$‎, ‎where $d_{i}$ denotes the degree of a vertex $v_{i}$ in $G$‎. ‎In‎ ‎this paper‎, ‎we determine the unique tree with minimum average‎ ‎eccentricity among the set of trees with given number of pendent‎ ‎vertices and determine the unique tree with maximum average‎ ‎eccentricity among the set of $n$-vertex trees with two adjacent‎ ‎vertices of maximum degree $Delta$‎, ‎where $ngeq 2Delta$‎. ‎Also‎, ‎we‎ ‎give some relations between the average eccentricity‎, ‎the harmonic‎ ‎index and the largest signless Laplacian eigenvalue‎, ‎and strengthen‎ ‎a result on the Randi'{c} index and the largest signless Laplacian‎ ‎eigenvalue conjectured by Hansen and Lucas cite{hl}‎.
关于图的平均离心率、调和指数和最大无符号拉普拉斯特征值
顶点的离心率是从它到‎ ‎另一个顶点和a的平均离心率$eccleft(Gright)$‎ ‎图$G$是‎ ‎$G$‎. ‎定义了图$G$的调和指数$Hleft(Gright)$‎ ‎作为所有边$v上$frac{2}{d_{i}+d_{j}}$的和_{i}v_{j} 第美元,共美元‎ ‎$G$‎, ‎其中$d_{i}$表示$G中顶点$v_$‎. ‎在里面‎ ‎这篇论文‎, ‎我们用最小平均值确定唯一树‎ ‎具有给定悬垂数的树集的偏心率‎ ‎顶点并确定具有最大平均值的唯一树‎ ‎具有两个相邻顶点的$n$-顶点树集的离心率‎ ‎最大度顶点$Delta$‎, ‎其中$ngeq2Delta$‎. ‎而且‎, ‎我们‎ ‎给出平均离心率之间的一些关系‎, ‎谐波‎ ‎指数和最大无符号拉普拉斯特征值‎, ‎并加强‎ ‎Randi’{c}指数与最大无符号拉普拉斯算子的一个结果‎ ‎Hansen和Lucas的特征值猜想‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信