A. Abiad, L. de Lima, Dheer Noal Desai, Krystal Guo, L. Hogben, Jos'e Madrid
{"title":"Positive and negative square energies of graphs","authors":"A. Abiad, L. de Lima, Dheer Noal Desai, Krystal Guo, L. Hogben, Jos'e Madrid","doi":"10.13001/ela.2023.7827","DOIUrl":null,"url":null,"abstract":"The energy of a graph $G$ is the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. Let $s^+(G), s^-(G)$ denote the sum of the squares of the positive and negative eigenvalues of $G$, respectively. It was conjectured by [Elphick, Farber, Goldberg, Wocjan, Discrete Math. (2016)] that if $G$ is a connected graph of order $n$, then $s^+(G)\\geq n-1$ and $s^-(G) \\geq n-1$. In this paper, we show partial results towards this conjecture. In particular, numerous structural results that may help in proving the conjecture are derived, including the effect of various graph operations. These are then used to establish the conjecture for several graph classes, including graphs with certain fraction of positive eigenvalues and unicyclic graphs.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7827","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
The energy of a graph $G$ is the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. Let $s^+(G), s^-(G)$ denote the sum of the squares of the positive and negative eigenvalues of $G$, respectively. It was conjectured by [Elphick, Farber, Goldberg, Wocjan, Discrete Math. (2016)] that if $G$ is a connected graph of order $n$, then $s^+(G)\geq n-1$ and $s^-(G) \geq n-1$. In this paper, we show partial results towards this conjecture. In particular, numerous structural results that may help in proving the conjecture are derived, including the effect of various graph operations. These are then used to establish the conjecture for several graph classes, including graphs with certain fraction of positive eigenvalues and unicyclic graphs.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.