Positive and negative square energies of graphs

IF 0.7 4区 数学 Q2 Mathematics
A. Abiad, L. de Lima, Dheer Noal Desai, Krystal Guo, L. Hogben, Jos'e Madrid
{"title":"Positive and negative square energies of graphs","authors":"A. Abiad, L. de Lima, Dheer Noal Desai, Krystal Guo, L. Hogben, Jos'e Madrid","doi":"10.13001/ela.2023.7827","DOIUrl":null,"url":null,"abstract":"The energy of a graph $G$ is the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. Let $s^+(G), s^-(G)$ denote the sum of the squares of the positive and negative eigenvalues of $G$, respectively. It was conjectured by [Elphick, Farber, Goldberg, Wocjan, Discrete Math. (2016)] that if $G$ is a connected graph of order $n$, then $s^+(G)\\geq n-1$ and $s^-(G) \\geq n-1$. In this paper, we show partial results towards this conjecture. In particular, numerous structural results that may help in proving the conjecture are derived, including the effect of various graph operations. These are then used to establish the conjecture for several graph classes, including graphs with certain fraction of positive eigenvalues and unicyclic graphs.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7827","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

The energy of a graph $G$ is the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. Let $s^+(G), s^-(G)$ denote the sum of the squares of the positive and negative eigenvalues of $G$, respectively. It was conjectured by [Elphick, Farber, Goldberg, Wocjan, Discrete Math. (2016)] that if $G$ is a connected graph of order $n$, then $s^+(G)\geq n-1$ and $s^-(G) \geq n-1$. In this paper, we show partial results towards this conjecture. In particular, numerous structural results that may help in proving the conjecture are derived, including the effect of various graph operations. These are then used to establish the conjecture for several graph classes, including graphs with certain fraction of positive eigenvalues and unicyclic graphs.
图的正能量和负能量平方
图$G$的能量是$G$的邻接矩阵的特征值的绝对值之和。设$s^+(G), s^-(G)$分别表示$G$的正特征值和负特征值的平方和。它是由[Elphick, Farber, Goldberg, Wocjan,离散数学]推测出来的。(2016)],如果$G$是顺序$n$的连通图,那么$s^+(G)\geq n-1$和$s^-(G) \geq n-1$。本文给出了这个猜想的部分结果。特别是,许多结构的结果,可能有助于证明猜想被导出,包括各种图操作的影响。然后用这些来建立几种图类的猜想,包括具有一定比例的正特征值的图和单环图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信