Identificación de actores en un desastre a través de Twitter: Caso de estudio SINABUNG 2018

Daniel Orlando Martínez Quezada, Robinson Ortiz Sierra, Juan Guillermo Martínez Cano, Henry Lamos Díaz
{"title":"Identificación de actores en un desastre a través de Twitter: Caso de estudio SINABUNG 2018","authors":"Daniel Orlando Martínez Quezada, Robinson Ortiz Sierra, Juan Guillermo Martínez Cano, Henry Lamos Díaz","doi":"10.18359/rcin.3938","DOIUrl":null,"url":null,"abstract":"Twitter se ha convertido en una herramienta importante para conocer en tiempo real lo que sucede en el mundo político, social y económico. Esta plataforma es cada vez más atractiva como medio de comunicación para diferentes tipos de eventos, puede ser usada en procesos de operaciones logísticas y humanitarias mejorando la comunicación entre los actores involucrados en una situación de un desastre natural. El enfoque de Análisis de Redes Sociales ARS se usó para datos generados en la red social Twitter para un evento de desastre natural, analizando tres actores importantes, los usuarios, hashtags y URLs. En el presente trabajo se presenta una metodología ARS implementada en un caso de estudio de desastre (erupción del volcán Sinabung en 2018). A partir de los análisis se identificaron usuarios, temas y fuentes de información relevantes durante la ocurrencia del desastre. Los análisis ofrecen una vista general de las interacciones e impacto de los elementos más influyentes durante el evento bajo estudio, teniendo una importancia destacada los equipos de noticia, redes sociales y centros de investigación. Los hallazgos del estudio son comparados con un estudio anterior, encontrando similitudes en la mayoría de estos, sin embargo, en nuestro estudio se identificó nuevos actores del ámbito técnico académico que buscan contribuir y difundir información relevante del evento disruptivo.","PeriodicalId":31201,"journal":{"name":"Ciencia e Ingenieria Neogranadina","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia e Ingenieria Neogranadina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18359/rcin.3938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twitter se ha convertido en una herramienta importante para conocer en tiempo real lo que sucede en el mundo político, social y económico. Esta plataforma es cada vez más atractiva como medio de comunicación para diferentes tipos de eventos, puede ser usada en procesos de operaciones logísticas y humanitarias mejorando la comunicación entre los actores involucrados en una situación de un desastre natural. El enfoque de Análisis de Redes Sociales ARS se usó para datos generados en la red social Twitter para un evento de desastre natural, analizando tres actores importantes, los usuarios, hashtags y URLs. En el presente trabajo se presenta una metodología ARS implementada en un caso de estudio de desastre (erupción del volcán Sinabung en 2018). A partir de los análisis se identificaron usuarios, temas y fuentes de información relevantes durante la ocurrencia del desastre. Los análisis ofrecen una vista general de las interacciones e impacto de los elementos más influyentes durante el evento bajo estudio, teniendo una importancia destacada los equipos de noticia, redes sociales y centros de investigación. Los hallazgos del estudio son comparados con un estudio anterior, encontrando similitudes en la mayoría de estos, sin embargo, en nuestro estudio se identificó nuevos actores del ámbito técnico académico que buscan contribuir y difundir información relevante del evento disruptivo.
通过Twitter识别灾难中的行动者:SINABUNG 2018案例研究
Twitter已经成为实时了解政治、社会和经济世界正在发生什么的重要工具。该平台作为不同类型事件的沟通手段越来越有吸引力,可用于后勤和人道主义行动过程,改善参与自然灾害情况的行动者之间的沟通。ARS社交网络分析方法用于自然灾害事件在社交网络Twitter上生成的数据,分析三个主要参与者:用户、标签和url。本文介绍了在灾害案例研究(2018年锡纳朋火山爆发)中实施的ARS方法。本研究的目的是确定灾害发生期间的用户、主题和相关信息来源。分析提供了在研究事件中最具影响力的元素的互动和影响的概述,重点是新闻团队、社交网络和研究中心。这项研究的结果与之前的一项研究进行了比较,发现大多数研究都有相似之处,然而,在我们的研究中,我们确定了技术学术领域的新参与者,他们寻求贡献和传播有关颠覆性事件的相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
9
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信