Hans Christian Correa-Aguado, G. V. Cerrillo-Rojas, M. M. Aguilera Flores, Sergio Zavala Castillo, J. F. Morales-Domínguez
{"title":"Optimized infrared-assisted extraction to obtain total lipid from microalgae Scenedesmus obliquus: a green approach","authors":"Hans Christian Correa-Aguado, G. V. Cerrillo-Rojas, M. M. Aguilera Flores, Sergio Zavala Castillo, J. F. Morales-Domínguez","doi":"10.1515/ijcre-2022-0107","DOIUrl":null,"url":null,"abstract":"Abstract Microalgae oil has great potential to address the growing energy demand and dependence on fossil fuels. However, the multilayered cell walls of microalgae hinder efficient extraction and enhanced lipid recovery. In this study, we develop a novel protocol based on near infrared-assisted extraction (NIRAE) technology to extract efficiently total lipids from Scenedesmus obliquus. Under a greener solvent extraction approach, the effect of nine non-polar/polar solvent systems in various ratios on lipid yield was tested, and the results were compared with Soxhlet, Folch, and Bligh–Dyer methods. The highest oil yields were NIRAE 15.43%, and Soxhlet 22.24%, using AcoEt/MeOH (1:2 v/v). For Folch and Bligh–Dyer, 9.11 and 10%, respectively. The optimized NIRAE conditions obtained using response surface methodology (RSM): 43.8 min, solvent/biomass 129.90:1 (m/v), and AcOEt/MeOH 0.57:2.43 (v/v) increased the oil yield significantly to 24.20%. In contrast to conventional methods, the overall optimized NIRAE process satisfied the requirements of a green extraction because of the simple and safe operation, less solvent toxicity, lower extraction time, and solvent and energy consumption.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"549 - 563"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Microalgae oil has great potential to address the growing energy demand and dependence on fossil fuels. However, the multilayered cell walls of microalgae hinder efficient extraction and enhanced lipid recovery. In this study, we develop a novel protocol based on near infrared-assisted extraction (NIRAE) technology to extract efficiently total lipids from Scenedesmus obliquus. Under a greener solvent extraction approach, the effect of nine non-polar/polar solvent systems in various ratios on lipid yield was tested, and the results were compared with Soxhlet, Folch, and Bligh–Dyer methods. The highest oil yields were NIRAE 15.43%, and Soxhlet 22.24%, using AcoEt/MeOH (1:2 v/v). For Folch and Bligh–Dyer, 9.11 and 10%, respectively. The optimized NIRAE conditions obtained using response surface methodology (RSM): 43.8 min, solvent/biomass 129.90:1 (m/v), and AcOEt/MeOH 0.57:2.43 (v/v) increased the oil yield significantly to 24.20%. In contrast to conventional methods, the overall optimized NIRAE process satisfied the requirements of a green extraction because of the simple and safe operation, less solvent toxicity, lower extraction time, and solvent and energy consumption.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.