{"title":"A result on the c2 invariant for powers of primes","authors":"Maria S. Esipova, K. Yeats","doi":"10.4153/s0008439523000243","DOIUrl":null,"url":null,"abstract":"The $c_2$ invariant is an arithmetic graph invariant related to quantum field theory. We give a relation modulo $p$ between the $c_2$ invariant at $p$ and the $c_2$ invariant at $p^s$ by proving a relation modulo $p$ between certain coefficients of powers of products of particularly nice polynomials. The relation at the level of the $c_2$ invariant provides evidence for a conjecture of Schnetz.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The $c_2$ invariant is an arithmetic graph invariant related to quantum field theory. We give a relation modulo $p$ between the $c_2$ invariant at $p$ and the $c_2$ invariant at $p^s$ by proving a relation modulo $p$ between certain coefficients of powers of products of particularly nice polynomials. The relation at the level of the $c_2$ invariant provides evidence for a conjecture of Schnetz.