Unbounded domains in hierarchically hyperbolic groups

Pub Date : 2020-07-24 DOI:10.4171/ggd/706
H. Petyt, Davide Spriano
{"title":"Unbounded domains in hierarchically hyperbolic groups","authors":"H. Petyt, Davide Spriano","doi":"10.4171/ggd/706","DOIUrl":null,"url":null,"abstract":"We investigate unbounded domains in hierarchically hyperbolic groups and obtain constraints on the possible hierarchical structures. Using these insights, we characterise the structures of virtually abelian HHGs and show that the class of HHGs is not closed under finite extensions. This provides a strong answer to the question of whether being an HHG is invariant under quasiisometries. Along the way, we show that infinite torsion groups are not HHGs. By ruling out pathological behaviours, we are able to give simpler, direct proofs of the rank-rigidity and omnibus subgroup theorems for HHGs. This involves extending our techniques so that they apply to all subgroups of HHGs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We investigate unbounded domains in hierarchically hyperbolic groups and obtain constraints on the possible hierarchical structures. Using these insights, we characterise the structures of virtually abelian HHGs and show that the class of HHGs is not closed under finite extensions. This provides a strong answer to the question of whether being an HHG is invariant under quasiisometries. Along the way, we show that infinite torsion groups are not HHGs. By ruling out pathological behaviours, we are able to give simpler, direct proofs of the rank-rigidity and omnibus subgroup theorems for HHGs. This involves extending our techniques so that they apply to all subgroups of HHGs.
分享
查看原文
层次双曲群中的无界域
我们研究了层次双曲群中的无界域,并得到了可能的层次结构的约束。利用这些见解,我们刻画了几乎阿贝尔HHG的结构,并证明了HHG类在有限扩展下是不闭合的。这为作为HHG在拟等距下是否不变的问题提供了一个强有力的答案。在此过程中,我们证明了无限扭群不是HHG。通过排除病理行为,我们能够给出HHG的秩刚性和综合子群定理的更简单、直接的证明。这涉及到扩展我们的技术,使其适用于HHG的所有亚组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信