Towards Reliability-Enhanced Mechanical Characterization of Non-Crimp Fabrics: How to Compare Two Force-Displacement Curves against a Null Material Hypothesis
S. Sultana, A. Rashidi, M. S. Islam, B. Crawford, A. Milani
{"title":"Towards Reliability-Enhanced Mechanical Characterization of Non-Crimp Fabrics: How to Compare Two Force-Displacement Curves against a Null Material Hypothesis","authors":"S. Sultana, A. Rashidi, M. S. Islam, B. Crawford, A. Milani","doi":"10.4236/OJCM.2019.92008","DOIUrl":null,"url":null,"abstract":"Detailed characterization of fabric reinforcements is necessary to ensure the quality of manufactured composite parts, and subsequently to prevent structural failure during service. A lack of consensus and standardization exists in selecting test methods for the mechanical characterization of fabrics. Moreover, in reality, during any experimentation there are sources of uncertainties which may result in inconsistencies in the interpretation of data and the comparison of different testing methods. The aim of this article is to show how simple statistical data analysis methods may be used to enhance the characterization of composite fabrics under individual and combined loading modes while accounting for inherent material/test uncertainties. Results using a typical glass non-crimp fabric (NCF) show that, statistically, there are significant differences between the warp and weft direction responses of a presumably balanced NCF under all deformation modes, with weft yarns being generally stiffer. Moreover, the statistical significance of warp-weft couplings under both simultaneous and sequential biaxial-shear loading modes became statistically evident, when compared to a pure biaxial deformation.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复合材料期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/OJCM.2019.92008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Detailed characterization of fabric reinforcements is necessary to ensure the quality of manufactured composite parts, and subsequently to prevent structural failure during service. A lack of consensus and standardization exists in selecting test methods for the mechanical characterization of fabrics. Moreover, in reality, during any experimentation there are sources of uncertainties which may result in inconsistencies in the interpretation of data and the comparison of different testing methods. The aim of this article is to show how simple statistical data analysis methods may be used to enhance the characterization of composite fabrics under individual and combined loading modes while accounting for inherent material/test uncertainties. Results using a typical glass non-crimp fabric (NCF) show that, statistically, there are significant differences between the warp and weft direction responses of a presumably balanced NCF under all deformation modes, with weft yarns being generally stiffer. Moreover, the statistical significance of warp-weft couplings under both simultaneous and sequential biaxial-shear loading modes became statistically evident, when compared to a pure biaxial deformation.