Homological filling functions with coefficients

Pub Date : 2020-09-28 DOI:10.4171/ggd/675
Xing-xiao Li, Fedor Manin
{"title":"Homological filling functions with coefficients","authors":"Xing-xiao Li, Fedor Manin","doi":"10.4171/ggd/675","DOIUrl":null,"url":null,"abstract":"How hard is it to fill a loop in a Cayley graph with an unoriented surface? Following a comment of Gromov in \"Asymptotic invariants of infinite groups\", we define homological filling functions of groups with coefficients in a group $R$. Our main theorem is that the coefficients make a difference. That is, for every $n \\geq 1$ and every pair of coefficient groups $A, B \\in \\{\\mathbb{Z},\\mathbb{Q}\\} \\cup \\{\\mathbb{Z}/p\\mathbb{Z} : p\\text{ prime}\\}$, there is a group whose filling functions for $n$-cycles with coefficients in $A$ and $B$ have different asymptotic behavior.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How hard is it to fill a loop in a Cayley graph with an unoriented surface? Following a comment of Gromov in "Asymptotic invariants of infinite groups", we define homological filling functions of groups with coefficients in a group $R$. Our main theorem is that the coefficients make a difference. That is, for every $n \geq 1$ and every pair of coefficient groups $A, B \in \{\mathbb{Z},\mathbb{Q}\} \cup \{\mathbb{Z}/p\mathbb{Z} : p\text{ prime}\}$, there is a group whose filling functions for $n$-cycles with coefficients in $A$ and $B$ have different asymptotic behavior.
分享
查看原文
带系数的同调填充函数
在无方向曲面的Cayley图中填充一个循环有多难?根据Gromov在“无穷群的渐近不变量”中的注释,我们定义了群中带系数群的同调填充函数$R$。我们的主要定理是系数是有区别的。即对于每一个$n \geq 1$和每一对系数群$A, B \in \{\mathbb{Z},\mathbb{Q}\} \cup \{\mathbb{Z}/p\mathbb{Z} : p\text{ prime}\}$,都有一个群,其对$A$和$B$中有系数的$n$ -环的填充函数具有不同的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信