2-adic cofiltration of SO3(Q)

IF 0.3 Q4 MATHEMATICS
Tengiz Bokelavadze , Raffaello Caserta
{"title":"2-adic cofiltration of SO3(Q)","authors":"Tengiz Bokelavadze ,&nbsp;Raffaello Caserta","doi":"10.1016/j.trmi.2017.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the group <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></math></span> of rational rotations is the inverse limit of a family of finite solvable groups of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mi>k</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>⋅</mo><mn>3</mn></math></span>, whose <span><math><mn>2</mn></math></span>-Sylow subgroups have nilpotency class <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>3</mn></math></span>, exponent <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, and Frattini subgroups coinciding with the commutator subgroups, and we give generators for these groups.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 3","pages":"Pages 257-263"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.06.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217300077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the group SO3(Q) of rational rotations is the inverse limit of a family of finite solvable groups of order 23k23, whose 2-Sylow subgroups have nilpotency class 2k3, exponent 2k1, and Frattini subgroups coinciding with the commutator subgroups, and we give generators for these groups.

SO3的二进共滤(Q)
证明了有理旋转群SO3(Q)是一类23k−2·3阶有限可解群的逆极限,该类群的2- sylow子群具有幂零类2k−3,指数2k−1,以及与对易子群一致的Frattini子群,并给出了这些群的生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信