Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

IF 0.4 Q4 MATHEMATICS
S. O. Shah, A. Zada
{"title":"Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on\nTime Scales","authors":"S. O. Shah, A. Zada","doi":"10.52547/ijmsi.17.1.85","DOIUrl":null,"url":null,"abstract":". This manuscript presents Hyers–Ulam stability and Hyers– Ulam–Rassias stability results of non–linear Volterra integro–delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of so-lutions. By means of abstract Gr¨onwall lemma, Gr¨onwall’s inequality on time scales, we establish Hyers–Ulam stability and Hyers–Ulam–Rassias stability results. There are some primary lemmas, inequalities and rele-vant assumptions that helps in our stability results.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ijmsi.17.1.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

. This manuscript presents Hyers–Ulam stability and Hyers– Ulam–Rassias stability results of non–linear Volterra integro–delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of so-lutions. By means of abstract Gr¨onwall lemma, Gr¨onwall’s inequality on time scales, we establish Hyers–Ulam stability and Hyers–Ulam–Rassias stability results. There are some primary lemmas, inequalities and rele-vant assumptions that helps in our stability results.
时间尺度上具有分数阶可积脉冲的非线性Volterra积分时滞动态系统的Hyers-Ulam稳定性
.本文给出了具有分数可积脉冲的时间尺度上非线性Volterra积分-时滞动态系统的Hyers–Ulam稳定性和Hyers–乌拉姆–Rassias稳定性结果。Picard不动点定理用于获得解的存在性和唯一性。利用抽象的Gr¨onwall引理,Gr¨on wall在时间尺度上的不等式,我们建立了Hyers–Ulam稳定性和Hyers–乌拉姆–Rassias稳定性的结果。有一些主要的引理、不等式和相关的假设有助于我们的稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信