Case study: Numerical study of the noise reduction characteristics of corrugated perforated pipe mufflers

IF 0.3 4区 工程技术 Q4 ACOUSTICS
Z. Hou, Tanghong Xu, Zhijun Zhang, Jiyu Sun
{"title":"Case study: Numerical study of the noise reduction characteristics of corrugated perforated pipe mufflers","authors":"Z. Hou, Tanghong Xu, Zhijun Zhang, Jiyu Sun","doi":"10.3397/1/37702","DOIUrl":null,"url":null,"abstract":"Resistant mufflers are commonly used in the wide band noise control of the exhaust of tractor internal combustion engines due to their simple structure, broadband frequency performance and long service life. In this paper, a corrugated perforated pipe muffler was proposed based on an\n improved design of a straight-through perforated pipe muffler to reduce the exhaust noise of internal combustion engines. The acoustic attenuation performance of the corrugated perforated tube muffler under the action of nonuniform flow and a temperature gradient was predicted by using the\n one-way flow-acoustic coupling method, which combines computational fluid dynamics and the acoustic finite element method. The pressure loss and self-noise of the corrugated perforated tube muffler were compared with those of the straight-through perforated tube muffler. The influence of the\n structural parameters of the corrugated perforated tube mufflers on the transmission loss was analyzed. The significance level of the perforation diameter, peak height, distance between adjacent peaks, and peak width on the transmission loss of the corrugated perforated tube muffler was studied\n by multiple linear regression analysis.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/37702","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Resistant mufflers are commonly used in the wide band noise control of the exhaust of tractor internal combustion engines due to their simple structure, broadband frequency performance and long service life. In this paper, a corrugated perforated pipe muffler was proposed based on an improved design of a straight-through perforated pipe muffler to reduce the exhaust noise of internal combustion engines. The acoustic attenuation performance of the corrugated perforated tube muffler under the action of nonuniform flow and a temperature gradient was predicted by using the one-way flow-acoustic coupling method, which combines computational fluid dynamics and the acoustic finite element method. The pressure loss and self-noise of the corrugated perforated tube muffler were compared with those of the straight-through perforated tube muffler. The influence of the structural parameters of the corrugated perforated tube mufflers on the transmission loss was analyzed. The significance level of the perforation diameter, peak height, distance between adjacent peaks, and peak width on the transmission loss of the corrugated perforated tube muffler was studied by multiple linear regression analysis.
案例研究:波纹孔管消声器降噪特性的数值研究
阻力消声器由于结构简单、频带宽、使用寿命长,被广泛应用于拖拉机内燃机排气的宽带噪声控制中。为了降低内燃机排气噪声,本文在对直通式穿孔管消声器进行改进设计的基础上,提出了一种波纹穿孔管消声器。采用计算流体力学和声学有限元相结合的单向流声耦合方法,预测了波纹穿孔管消声器在非均匀流和温度梯度作用下的声学衰减性能。比较了波纹穿孔管消声器和直通穿孔管消声器的压力损失和自噪声。分析了波纹穿孔管消声器结构参数对传输损耗的影响。通过多元线性回归分析,研究了穿孔直径、峰值高度、相邻峰值之间的距离和峰值宽度对波纹穿孔管消声器传输损耗的显著性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Noise Control Engineering Journal
Noise Control Engineering Journal 工程技术-工程:综合
CiteScore
0.90
自引率
25.00%
发文量
37
审稿时长
3 months
期刊介绍: NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE). NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes. INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ: Provides the opportunity to reach a global audience of NCE professionals, academics, and students; Enhances the prestige of your work; Validates your work by formal peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信