Comparison of various epidemic models on the COVID-19 outbreak in Indonesia

I. Wahyuni, Ayu Shabrina, Inna Syafarina, A. Latifah
{"title":"Comparison of various epidemic models on the COVID-19 outbreak in Indonesia","authors":"I. Wahyuni, Ayu Shabrina, Inna Syafarina, A. Latifah","doi":"10.14710/jtsiskom.2021.14222","DOIUrl":null,"url":null,"abstract":"This paper compares four mathematical models to describe Indonesia's current coronavirus disease 2019 (COVID-19) pandemic. The daily confirmed case data are used to develop the four models: Logistic, Richards, SIR, and SEIR. A least-square fitting computes each parameter to the available confirmed cases data. We conducted parameterization and sensitivity experiments by varying the length of the data from 60 until 300 days of transmission. All models are susceptible to the epidemic data. Though the correlations between the models and the data are pretty good (>90%), all models still show a poor performance (RMSE>18%). In this study case, Richards model is superior to other models from the highest projection of the positive cases of COVID-19 in Indonesia. At the same time, others underestimate the outbreak and estimate too early decreasing phase. Richards model predicts that the pandemic remains high for a long time, while others project the pandemic will finish much earlier.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2021.14222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper compares four mathematical models to describe Indonesia's current coronavirus disease 2019 (COVID-19) pandemic. The daily confirmed case data are used to develop the four models: Logistic, Richards, SIR, and SEIR. A least-square fitting computes each parameter to the available confirmed cases data. We conducted parameterization and sensitivity experiments by varying the length of the data from 60 until 300 days of transmission. All models are susceptible to the epidemic data. Though the correlations between the models and the data are pretty good (>90%), all models still show a poor performance (RMSE>18%). In this study case, Richards model is superior to other models from the highest projection of the positive cases of COVID-19 in Indonesia. At the same time, others underestimate the outbreak and estimate too early decreasing phase. Richards model predicts that the pandemic remains high for a long time, while others project the pandemic will finish much earlier.
新冠肺炎在印度尼西亚爆发的各种流行病模型的比较
本文比较了四种数学模型来描述印度尼西亚目前的冠状病毒病2019 (COVID-19)大流行。每日确诊病例数据用于开发四种模型:Logistic、Richards、SIR和SEIR。最小二乘拟合计算可用的确诊病例数据的每个参数。我们通过改变传输数据的长度(从60天到300天)进行了参数化和灵敏度实验。所有模型都容易受到流行病数据的影响。虽然模型和数据之间的相关性非常好(>90%),但所有模型的表现仍然很差(RMSE>18%)。在本研究案例中,Richards模型在印度尼西亚COVID-19阳性病例的最高预测上优于其他模型。与此同时,也有人低估了疫情,过早地估计了下降阶段。理查兹的模型预测,疫情将在很长一段时间内保持高水平,而其他人则预测疫情将更早结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信