Haar-$\mathcal I$ sets: looking at small sets in Polish groups through compact glasses

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. Banakh, Szymon Glkab, Eliza Jablo'nska, J. Swaczyna
{"title":"Haar-$\\mathcal I$ sets: looking at small sets in Polish groups through compact glasses","authors":"T. Banakh, Szymon Glkab, Eliza Jablo'nska, J. Swaczyna","doi":"10.4064/dm812-2-2021","DOIUrl":null,"url":null,"abstract":"Generalizing Christensen's notion of a Haar-null set and Darji's notion of a Haar-meager set, we introduce and study the notion of a Haar-$\\mathcal I$ set in a Polish group. Here $\\mathcal I$ is an ideal of subsets of some compact metrizable space $K$. A Borel subset $B\\subset X$ of a Polish group $X$ is called Haar-$\\mathcal I$ if there exists a continuous map $f:K\\to X$ such that $f^{-1}(B+x)\\in\\mathcal I$ for all $x\\in X$. Moreover, $B$ is generically Haar-$\\mathcal I$ if the set of witness functions $\\{f\\in C(K,X):\\forall x\\in X\\;\\;f^{-1}(B+x)\\in\\mathcal I\\}$ is comeager in the function space $C(K,X)$. We study (generically) Haar-$\\mathcal I$ sets in Polish groups for many concrete and abstract ideals $\\mathcal I$, and construct the corresponding distinguishing examples. Also we establish various Steinhaus properties of the families of (generically) Haar-$\\mathcal I$ sets in Polish groups for various ideals $\\mathcal I$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm812-2-2021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Generalizing Christensen's notion of a Haar-null set and Darji's notion of a Haar-meager set, we introduce and study the notion of a Haar-$\mathcal I$ set in a Polish group. Here $\mathcal I$ is an ideal of subsets of some compact metrizable space $K$. A Borel subset $B\subset X$ of a Polish group $X$ is called Haar-$\mathcal I$ if there exists a continuous map $f:K\to X$ such that $f^{-1}(B+x)\in\mathcal I$ for all $x\in X$. Moreover, $B$ is generically Haar-$\mathcal I$ if the set of witness functions $\{f\in C(K,X):\forall x\in X\;\;f^{-1}(B+x)\in\mathcal I\}$ is comeager in the function space $C(K,X)$. We study (generically) Haar-$\mathcal I$ sets in Polish groups for many concrete and abstract ideals $\mathcal I$, and construct the corresponding distinguishing examples. Also we establish various Steinhaus properties of the families of (generically) Haar-$\mathcal I$ sets in Polish groups for various ideals $\mathcal I$.
Haar-$\mathcal I$集:通过紧凑型眼镜观察波兰群体中的小集
推广了Christensen的Haar空集概念和Darji的Haar贫集概念,引入并研究了波兰群中Haar-$\mathcalI$集的概念。这里$\mathcal I$是某个紧致可度量空间$K$的子集的理想。波兰群$X$的Borel子集$B\子集X$称为Haar-$\mathcal I$,如果存在到X$的连续映射$f:K\,使得对于X$中的所有$X\,$f^{-1}(B+X)\in\mathcal I$。此外,如果C(K,X)中的见证函数$\{f\:\ for all X\ in X\;\;f^{-1}(B+X)\ in \mathcal I\}$的集合在函数空间$C(K,X)$中是comeager,则$B$一般是Haar-$\mathcal I$。我们(一般地)研究了波兰群中许多具体和抽象理想$\mathcal I$的Haar-$\mathical I$集,并构造了相应的区别例子。此外,我们还为各种理想$\mathcalI$建立了波兰群中(一般)Haar-$\mathcal I$集合族的各种Steinhaus性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信